PERCEPTION AND INFORMATION

James E. Cutting

Department of Psychology, Cornell University, Ithaca NY 14853-7601

CONTENTS

INTRODUCTION .. 62
 Historical Roots ... 62
 Mapping, Inference, Structure, and Measurement 62
STRUCTURE FROM EXPERIENCE ... 64
 Information in Frequency of Occurrence 64
STRUCTURE FROM CONSTRAINTS ... 65
 Information from Bits to Simplicity ... 65
 Information from Group Theory ... 66
STRUCTURE FROM STATISTICS .. 67
 Information in Texture Shape .. 67
 Information in Dotted Forms ... 69
STRUCTURE FROM NEURAL ANALYSIS ... 70
 Information in Fourier Components .. 70
STRUCTURE FROM GEOMETRY .. 71
 Information, Geometry, and Static Form 71
 Information, Geometry, and Motion .. 72
 Information for Perception and Action 75
 Information, Topology, and the 'Geometry of the Viscibles' 75
INFORMATION AND ICONIC MEMORY .. 76
INFORMATION IN NONVISUAL MODALITIES 77
INFORMATION USE ... 77
 Equivalence, Cognitive Penetrability, and Choice 77
 Additivity, Integration, and Multimodal Perception 78
 Informative Displays ... 79

How, then, is it that we receive accurate information, by the eye, of size, and shape, and distance?'

James Mill (1829, p 95)
INTRODUCTION

What is the nature of information, what enables it to inform our perceptual systems? Psychology, particularly in its study of information processing, aspires to an answer, but since perception researchers measure information in different ways, this answer is not definitive. By its focus on processing, psychology has long taken information for granted, usually assuming it to be like text or speech, but if information were actually so constrained, I contend, the bulk of perception would be uninformed. The world rarely presents itself language-like to our senses.

In this review I consider various types of information assumed by perceptual researchers. Assumptions about information constrain our ideas about the relations between perception and cognition. They shape the emerging field of cognitive science. They also form the backdrop to the issue of bottom-up versus top-down processing—the latter a time-worn but far from weary idea, formal syntheses of these two positions are emerging (e.g., McClelland 1985, McClelland & Elman 1986), but here I focus on bottom-up issues.

Historical Roots

Among English writers, Shakespeare may have had priority in linking perception and information in a single statement “It is the bloody business,” says Macbeth, “which informs thus to mine eyes” [Macbeth (II, i)]. But Mill, as quoted above, was among the first philosophers of mind to conjoin the two. Indeed, perception and information are a natural pair. Both of Latin origin, they appeared in English literature in the 14th and 15th centuries. Information, the older term, signified communication of knowledge, a notion with which modern treatments are still in tune (Machlup & Mansfield 1983). Etymologically, to inform means “to instill a form within.” and it is a modest step to consider perception as instilling the forms of external objects in the mind of a perceiver.

“Perception” has a more curious etymology. In feudal economics it meant the collection of rents. Its present meaning retains an aspect of its heritage if we recognize perception as the collection of information about the world. For Locke (1690) and Berkeley (1709) perception was broadly associated with thinking. Reid (1785) distinguished it from sensation, yet, to use Hamilton’s (1859) terminology, how does one separate presentation by the senses from re-presentation by the mind? One approach is to study the mapping entailed between proximal information and distal objects and events.

Mapping, Inference, Structure, and Measurement

Proximal-distal mappings are central to the discussion of perceptual information. Their consideration began in earnest with Koffka (1935), but roots can
be found in the causal theory of perception (e.g. Russell 1927). The typical course of perception for a readied organism proceeds 1 from real-world object or event, 2 through a medium, 3 to sensory surfaces and receptors, and then 4 to the central nervous system. One can study information at stage 2. If the mapping from stage 3 back to stage 1 is ruly, then perception can be relatively straightforward, if not, additional elements must be added. Doubts about the completeness of these four steps caused many to add 5 a stage of conceptual elaboration and re-presentation (e.g. Descartes 1649, Locke 1690). Berkeley (1733) waffled, but J. S. Mill (1843) finally christened stage 5 with the name inference. Helmholtz (1866) then toyed with the term unconscious inference but gave it up (Helmholtz 1878) because Schopenhauer had used this term to denote a different concept. Regardless, the idea of unconscious inference remains with us today (e.g. Rock 1983, 1985).

But inferences come in two kinds. They can be deductively valid or inductively strong (e.g. Skyrms 1975). Perception could be deductive if all premises came from stimulus information and from design features of a perceptual system. Bottom-up processing is almost by necessity deductive. If the mapping from proximal stimulus back to distal object is assured, then no probabilistic associations need be added, no cognition is required. Richards et al. (1982) employed mathematical proof to determine when information is sufficient and deductive perception possible. This is a type of inference with which Gibson (1979) for one, could be happy. If, however, perception is inductive, some premises come from memory and cognition, perception must have top-down components with no recourse but to concepts of probabilism and cue-validity. Many modern thinkers have espoused such ideas (Brunswik 1956, Gregory 1974, Neisser 1967, Kolers 1983).

In broad form, however, this view seems on the wane. Part of the reason is an upturn of interest in the work of James Gibson and his ecological approach, an interest registered both by psychologists (Bruce & Green 1985, Shepard 1984, Turvey et al 1981, Warren & Shaw 1984b, Wilcox & Edwards 1982) and philosophers (Fodor & Pylyshyn 1981). Some have tried to improve on Gibson (Bickhard & Richie 1983, Heil 1983, Michaels & Carello 1981, Natsoulas 1984), others have pointed out problems with the ecological approach (Ullman 1980, Cutting 1982a), and still others have broached these problems for all theories of perception (Hochberg 1982, 1984, Cutting 1986).

New support for the idea of bottom-up processing has come from the field of machine vision. Through Marr (1982), Ullman (1979), the work that theirs has fostered (e.g. Brady 1981, Grimson 1981, Pentland 1986, Pinker 1984), and the work from somewhat different traditions (e.g. Ballard & Brown 1982, Binford 1981, McArthur 1982), machine vision has outraced the early lead of the ecological approach in its search for specifiable information on which
percepts might be based. An emerging synthesis of methodologies in psychology (Cutting 1986, Proffitt & Bertenthal 1986, Todd 1982, Todd & Mingolla 1983, Warren 1984) and machine vision (Hildreth 1984, Stevens 1981, 1983b, Ullman 1979) has brought a new style of research. Two steps are entailed: 1) mathematical proof of the consistency of information and 2) demonstration that it is perceptually useful.

Approaches to information are many. One could, following Aristotle, Kulpe (1895), and Kubovy (1981), look for stimulus dimensions that carry information—extent, time, frequency, and intensity. While such a neat beginning may be suitable for taste, olfaction, kinesthesis, and touch, it is much less so for audition and vision. Instead, another tradition has it that information is in structure (Garner 1962, 1974). Following this lead, I have divided approaches to information into five groups according to potential origins of structure—experience, constraints, statistics, analysis, and geometry. The crux of any information is its measure. How it is measured determines what is deemed important to a perceptual system. Each type assumes that perception, typically vision, is informed by measures of the stimulus, and that perception is, in part, information measurement (Lappin 1984).

STRUCTURE FROM EXPERIENCE

For James Mill, information existed in association networks and in what twentieth century analytic philosophy calls sense-data. This is the oldest form of information discussed in psychology.

Information in Frequency of Occurrence

The idea that information exists in the number of times something happens was at the base of Morton’s (1969, Gordon & Caramazza 1985) logogen model, which counted occurrences of words for later recognition, it also has a place in cognitive learning (Estes 1976), in concept formation (Mervis & Rosch 1981), and in memory [Hasher & Zacks 1979, although not in all contexts (Kahneman et al. 1982)]. In music perception, Krumhansl (1985) has found that probe tone ratings given by listeners to notes and chords as they fit into a diatonic scale are highly correlated with their frequency of occurrence in pieces of classical music. Such results complement her continued interest in the density of events in space and time (Krumhansl 1978, 1982).

PROBLEMS WITH FREQUENCY

Despite its utility to perception, frequency information is not perceptual, it must be cognitive. It can only be useful to an organism after large amounts of processing, or many logogen ticks, have occurred. It is not information about a current stimulus, it is about similar previous stimuli. Thus, frequency information leaves as a mystery how a
stimulus informs for the first time, or how similarity with previous stimuli is determined

STRUCTURE FROM CONSTRAINTS

A second general approach to information considers constraints. Rather than concentrating on what a stimulus is, this approach focuses on what it is not, considering potential false targets and weeding out alternative percepts.

Information from Bits to Simplicity

Perhaps the most familiar style of information measure comes from electrical engineering and information theory (Shannon & Weaver 1949)—bitwise assessment through logarithmic counts of alternatives. According to this approach, *information exists in the set size to which an object or event belongs*. Early applications to perception include those of Attneave (1954) and Garner (1962). Currently, this approach is not so popular in perception as in cognitive science more generally (Dretske 1981, Machlup & Mansfield 1983), but two threads remain. Bits-measure plays a practical role in electronic transmission of images, and it has fostered continuing interest in perceptual economy.

Sperling (1980, Sperling et al. 1985a) described techniques for the transmission of American Sign Language (ASL) over telephone lines. Since telephone transmission typically uses a bandwidth about 1/300 that of television, serious compression of the visual signal is necessary. Using many different coding schemes, the most successful entailing reduction and adaptive coding of pixels (picture elements) and reduction of frames transmitted, Sperling et al found it possible to transmit acceptable ASL at near-telephone line capacity. The practical import of these findings is patent, their theoretical implications are discussed below.

The second thread of interest in bits-measure involves the Gestalt concept of simplicity. The importance of design simplicity, or minimalism of physical solutions to structural problems in nature, was emphasized by Mach (1886) and later by Kohler (Koffka 1935, Attneave 1982). In perception, good figures, the Gestaltists argued, should also be simple. The task of quantifying minimalism began with Hochberg & McAlister (1953) and has been renewed by Hemenway & Palmer (1978) and by Butler (1982). It has also received philosophical attention from Sober (1975) and from Hatfield & Epstein (1985). The natural descendent of the study of perceptual simplicity is the work of Leeuwenberg (1971, Buffart et al. 1981, 1983) and what is now called structural information theory. In vision and audition, stimuli are parsed into primitive elements. These are then combined, counted, and demonstrated to predict perceived forms over certain nonperceived forms, which have less parsimonious combinatorics. In the visual perception of motion, Restle

PROBLEMS WITH BITS AND SIMPLICITY Among the assumptions in almost any application of information theory to perception is that perceptual objects come in fixed, homogeneous, nonoverlapping sets of known size. Unfortunately, the world around us is not populated with such things. And as with frequency, bits-measure is information only for an organism with substantial personal history.

Sperling’s work with ASL sequences suggests further difficulties. Bitwise assessment of images and its assumed psychological relevance rest on two deeper assumptions about aliasing, the distortions found in any quantized signal. That spatial aliasing [or discreteness effects due to receptor packing in the retina (Williams & Collier 1983)] constrains all perception of form and that temporal aliasing [or discreteness effects in stroboscopic motion due to low temporal resolution in the signal (Burr 1981)] constrains all perception of motion. Although both are important to perception and to discussion of high-quality images, neither has psychological preemminence. Multiplying pixels by gray scale by frame rates, seems an inadequate way to measure perceptual information.

The problems with approaches to simplicity are two. First, and appreciated by Goodman (1972) and Sober (1975), is justification of primitives or the stimulus “atoms” underlying percepts. One must have an a priori rationale for their choice, otherwise one’s proofs rest only upon shrewd guesses. Restle (1979), in selecting primitives from the mechanics of motions, seems to have justified this approach best. Second, Hochberg (1981, 1982), the originator of this approach, has shown that perceptual economy is easily overridden by other stimulus factors, thus robbing it of central importance.

Information from Group Theory

Where information theory and bitwise assessment left off, interest in mathematical groups picked up. The switch was led by Garner (1970) and his analysis of symmetry. If good patterns have few alternatives, there might be information in counting members of a symmetry group. The idea here is a plea for formalism—information is constrained through groups of transformations on a stimulus that follow postulates of closure, association, identity, and inversion. The roots of this idea can be traced to Cassirer (1944), Poincare (1907), and Helmholtz. Promoting what is now known as the “group of displacements,” Helmholtz (1894, p 504) suggested “Being acquainted with the material form of an object, we are able to represent clearly in our minds all the perspective images we expect to see when we look at it from
different sides, and we are startled if an image we actually see does not correspond to our expectations. The group of Euclidean translations (along x, y, and z axes) and rotations (around orthogonal axes oriented in x, y, and z) consists of six dimensions of continuous transformations that leave an object's shape invariant (Lévy-Leblond 1971).

PROBLEMS WITH GROUPS Eddington (1939, p. 148) stated that "The starting point of physical science is knowledge of the group-structure of a set of sensations in a consciousness." Group theory has much promise in perception, but there are nagging problems (Cutting 1986). For example, although groups can describe perceptual phenomena, their capacity to explain them is less clear. Consider a parallel from another branch of mathematics. Although catastrophe theory (e.g., Zeeman 1976) models equally well the hysteresis effects in stereopsis and in binge/purge eating disorders, it explains neither. So too group theory may model but not explain perception. At the very least, group theory suggests interesting questions about perception.

STRUCTURE FROM STATISTICS

A third approach to information is statistical, and in vision research it roughly divides two ways. The first considers statistics of textures that varicolor a surface, the second considers whole forms and has its roots in signal detection theory. In both, information is in spatial distribution.

Information in Texture Shape

Julesz has developed a theory of textons, or statistical primitives for the visual system (Julesz & Bergen 1983), where information is measured by the shape of a texture element. Julesz (1975) began by discussing the probability of two-dimensional (2-D) placement of dots, dipoles (oriented needles), and sequential gray scale (a kind of shading pattern) as first-, second-, and third-order statistics, respectively. His original conjecture was that textures identical in dot and dipole statistics but differing in gray scale could not be
discriminated. Interesting variations and counterexamples were found (Diaconis & Freedman 1981, Julesz 1981). Statistical order has faded from central importance, and the universe of textons is now tripartite, comprising elongated blobs, terminators, and the crossing of line segments. Any one of these can be located easily and rapidly on a surface of differing textons. Beck (1982b, 1983, Beck et al. 1983b) has followed in this vein. Julesz has continued (Sagi & Julesz 1985), and Caelli (1981, 1985) and Foster (1984) have promoted related schemes.

Perhaps the most important work on texture is that of Treisman (1982, 1985, Treisman & Paterson 1984, Treisman & Souther 1985, see also Prinzmetal 1981). Eschewing statistics, Treisman has proposed a feature-integration theory of perception, where focal attention is necessary to merge separate attributes of a stimulus. As in Julesz's work, empirical results determine features in an experimental task of visual search. Treisman demonstrated that search time is very long for a target among distractors that possess its component features. She found emergent features and search-time asymmetries that are further diagnostics for visual primitives. Her current list includes color, lines, terminators, and closure. Matching Julesz's list (and Marr's) rather well.

Other statistical attributes of form are treated by Zusne (1970) and Lord & Wilson (1984). In addition, Pentland (1983) has suggested that fractals may have psychological correlates. Fractals are graphical objects (technically curves) that fill space through recursion (self-similarity at different scales), can have noninteger dimensionality, and can have stochastic character (Mandelbrot 1983).

PROBLEMS WITH TEXTONS AND FEATURES Texton theory neatly bypasses one problem of structural information theory by basing its selection of primitives upon empirical results. But other difficulties arise. First, texton studies are. In essence, the study of wallpaper. A quick look around an environment without walls reveals that most common textures overlap, interleave, grade, and are differentially shaded. This may not pose insufferable difficulties because textons can be slanted without changing character (Kanade & Kender 1983, but see Beck 1982b). Second and more important, because it studies rapid perception texton theory bears only on static images. Reaction-time and tachistoscopic measures of perception apply primarily to information detectable at a single moment. But much information is revealed to vision through motion, and there is conflicting evidence as to whether form and motion are processed independently (Cutting 1982a, Krumhansl 1984). And third, texton studies do not consider natural textures.

Careful study of Brodatz's (1966) work on such textures will repay anyone.
Information in Dotted Forms

Another statistical approach concerns signal detection, proposing that information derives from probabilistic relations among signal elements and noise. In psychology, this style of research began as part of an engineering approach to speech perception (Miller et al 1951). In vision, such studies began at the dawn of the application of computer technology to perception. Researchers represented stimuli and noise by means of computer controlled dots. Stimulus dots were placed on the surface or within the form of primary interest. Dots have several physical properties that make them good tools of inquiry (Sperling 1971), and they are also easy to generate. This type of study has been sustained in three areas: 1) stereopsis, most notably studied by Julesz (1971; see also Prazdny 1985a), 2) the microtexture of form, and 3) the perception of motion. Only the latter two areas concern us here, and I discuss the last in a later section.

Glass (1969) discovered that by rotating identical sheets of speckled transparencies, with respect to one another, one will see remarkable, global swirling patterns, now known as Glass patterns. Their interest is in what they can tell us about local determinants of global patterns. Recently, Prazdny (1984, 1985b) has shown that spatial distributions of energy rather than of symbolic codes are responsible for the effect, and Zucker (1984, 1985, Zucker et al 1983, see also Stevens 1983a) used such patterns to discriminate two types of form: one of edge detection and the other of global patterning.

Uttal (1983, 1985) has continued his study of dotted forms. Among recent findings he noted two in conflict. In two-dimensional figures the most important attribute for detectability of dotted lines is evenness of spacing, but in three dimensions the detection of a curved surface peppered with dots is better when dots are randomly rather than regularly distributed. Uttal suggested that the latter finding is due to effects of spatial aliasing, the biases that emerge from regular sampling. Under conditions of three points with no noise, however, Lappin & Fuqua (1983) found remarkable sensitivity for even spacing of three dots rotating on a line slanted in depth.

Problems with Dotted Figures. Like textons and features, Glass patterns suggest fundamental processes early in the sequence of visual processing. But how do such processes work in the perception of everyday scenes? Zucker (1985) analyzes this issue, but his distinction relegates all normal perception to global-pattern processes. More importantly, dotted forms were initially used in studies of visual perception for the pragmatic reason that they were easy to generate and easy to control. With the development of better and cheaper computer graphics capabilities, which allow generation of increasingly naturalistic scenes, it is not clear what future role dotted-form
research should have in our field. Control is no longer sacrificed in complex displays.

STRUCTURE FROM NEURAL ANALYSIS

One aspect of simplicity and texton/featural approaches to perception is their focus on primitives—decomposition of scenes into discrete building blocks. When confronted with complex stimuli, such approaches cannot always guarantee straightforward decomposition. Some stimulus attributes, for example, may be both bloblike and terminatorlike. Two forms of analysis, however, guarantee complete decomposition. In one, currently called the neural dynamics approach (Cohen & Grossberg 1984, Grossberg & Mingolla 1985a,b), various perceptual phenomena are considered and neural networks proposed to model them (see also Anderson 1983). In the other and more traditional approach, stimuli are decomposed by Fourier analysis.

Information in Fourier Components

Fourier analysis of visual stimuli has burgeoned in the last 20 years. Borrowed from auditory research, this approach assumes that information lies in distribution, amplitude, and phase of sine wave components of a visual image. Yellott et al. (1984) recently reviewed this work.

Four threads can be traced within the recent literature. First, interesting new data are available on Fourier-like components that pervade underwater environments (MacFarland & Loew 1983). Second, the relation between Fourier channels and attention continues to be explored (Banks et al. 1985, Graham 1985, Yager et al. 1984), third, new spatiotemporal analyses have been performed (Nakayama & Silverman 1985, van Santen & Sperling 1984, 1985, Sekuler et al. 1984, Stromeyer et al. 1984), some including Gabor functions (Watson et al. 1983), and fourth, parsimonious image analysis and regeneration is now possible through pyramid schemes that provide excellent Fourier approximation (Burt & Adelson 1983a, 1983b).

PROBLEMS WITH SINE WAVES

There is great power in Fourier analysis, and that is its problem. Joseph Fourier guaranteed that any signal could be analyzed into sine waves. Thus, Fourier analysis (or the multilevel zero-crossing analysis of Marr 1982) is unselective. Everything in the stimulus is transformed, not merely the most meaningful or important parts. And except in work with faces (e.g. Harmon 1973), Fourier analysis is generally used to look inward at predispositions of the nervous system, rather than outward at the objects and events of the surrounding world. It simply cannot be that our visual system finds informative everything at 8 cycles/degree.
STRUCTURE FROM GEOMETRY

The idea that geometry is the foundation of vision has a long history—from Euclid through Alhazen, Kepler, and Descartes. We have generally ignored those roots, but Euclid (Burton 1945) was much interested in size, the horizon, occlusions, induced motion, and motion parallax. Euclid’s Optics, an extension of his Elements (the foundation of geometry), deals entirely with physical constraints on perception.

Although admonished otherwise, we can fit Gibson (1979) into the Euclidean tradition of classical optics. Information is geometrized “in the light,” measured in visual angles. For nearly a century the geometry thought relevant to vision has been projective (Russell 1897, Poincaré 1905, Johansson et al. 1980). But projections vary [see Carlbom & Paciorek (1978) for an overview of planar projection techniques and Sedgwick (1983) for their application to perception].

Information, Geometry, and Static Form

Geometric information concerns both the static and the moving form. Research on static projections has advanced in three areas: 1. relations of object parts to objects, 2. use of textures on surfaces to derive surface shape, without recourse to textons or features, and 3. use of shading to recover surface shape.

First, consider object recognition and the interpretation of junctions of line segments in recovery of object shape. Ballard & Brown (1982), McArthur (1982), and S. Lee et al. (1985) have reviewed work since Guzman’s (1969) analysis of intersections—forks, arrows, and tees—and Perkins (1983), Shepard (1981), and Barnard (1985) have considered constraints on the perception of rectangular solids. One basic assumption here—that solids are made up of edges that intersect at right angles—is clearly false for most natural objects.

The most important recent advance in figure-ground segregation is in the study of nonrectilinear contours. Koenderink & van Doorn (1982) and Koenderink (1984b) noted constraints on ending contours of smooth objects, and Hoffman & Richards (1984, Richards & Hoffman 1985) have suggested that six codons, or arrangements of maximal and minimal curvature in line segments, can be used to break up objects into parts on the basis of self-occluding contour, or silhouette profile. Codons map onto geons [or generalized cones (Binford 1981)] for object recognition. Biederman (1985) estimated that 36 geons can describe 2 million different objects. Nonrigid objects with rigid parts, like animals and people, might be categorized and recognized by such a scheme. Webb & Aggarwal (1982) Implementation of object recognition by such a scheme is probably far into the future, but the idea seems promising.
Second, consider surfaces. Discussion of surface geometry began with Gibson's (1950) analysis of information in texture relations. But after Gibson for a period of 30 years the issue of recovering surface shape from textures was bypassed for discussion of absolute surface slant and texture density, neither of which is an important psychological variable. Slant research continues (Epstein & Lovitts 1985), applied most notably to the practical problem of landing aircraft (Perrone 1984).

Owing to more recent interest in machine vision, the recovery of surface shape from texture geometry has recaptured attention. Orthogonally specifiable measures of textures on surfaces number at least three: density, scaling (or perspective), and foreshortening (or compression). Information about flatness is contained in the scaling measure and that about curvature in foreshortening (Cutting & Millard 1984, Stevens 1984, Todd & Mingolla 1984). Recent work in machine vision (Besl & Jain 1986, Brady et al 1985, Crimson 1983, Kanatani 1984, Ullman & Richards 1984) has concentrated on complex surface shape. But textures, like textons, are too sensitive to spacing considerations to play more than a minor role in the perception of natural surfaces.

Third, and most important, is shading. Studies of illumination have received recent psychological attention (Bergstrom et al 1984, Flock & Nusinowitz 1984, Gilchrist & Jacobsen 1984, Granrud et al 1985). Assisted by computers, psychological (Todd & Mingolla 1983, Mingolla & Todd 1986) and machine-vision (Pentland 1982, Woodham 1984, Lee & Rosenfeld 1985) studies of shaded surfaces are paving the way for a new kind of psychophysics, impossible even a few years ago, in which complex variables of lighting, reflectance, shading, and color can be minutely controlled.

Information, Geometry, and Motion

Ullman (1983) outlined three geometric approaches for the recovery of structure from “unrestricted” motion, which assumes nothing but rigidity (see also Webb & Aggarwal 1981). Rephrased slightly, they are 1) discrete points and views, 2) discrete points and displacements, and 3) displacement fields. The first two, and often the third, are related to the statistics of dotted forms discussed earlier, but here motion and geometry are paramount.

Discrete Points and Views The first approach considers planar projections of a rigid 3-D array of points at particular times. The projection locations are then used to derive 3-D structure. Following Ternus (1926), Ullman (1979) explored the correspondences among projections of points across different stimulus frames. More recently, Ullman (1984a) and Williams & Sekuler (1984) explored spatial and statistical constraints, respectively. Various stroboscopic effects have also been explored (Petersik 1979).
placed dots within a sphere and Lappin et al (1980), Lappin & Kottas (1981), and Doner et al (1984) placed them on its surface in the study of object coherence. Results show a remarkable ability of the human visual system to solve correspondences, considerable susceptibility to noise interference, and increased resistance to disruption with increased numbers of frames presented. Continuing studies of apparent motion also fit into this scheme (e.g. Ramachandran 1985, see also Allik & Dzhafarov 1984, Bregman & Mills 1982, Sperling et al 1985b).

A PROBLEM WITH POINTS AND VIEWS The drawback of points-and-views analysis is that it sets up a correspondence problem—negotiating which points map onto themselves across frames—that occurs only in phenomena of apparent motion, not in real motion. Todd (1984a, 1985), for example, has argued against points analysis in vision and has shown that correspondence is not necessary for the perception of a moving object.

DISCRETE POINTS AND DISPLACEMENTS The second approach to motion uses point locations and vectors (lines of particular length, direction, and sometimes curl) to represent relative velocities through 3-D space. This approach started with Johansson (1950) and Wallach & O'Connell (1953), but Green (1961) and Braunstein (1962) paved the way with studies of computer-generated motion. Johansson et al (1980) reviewed much of this work from the 1970s. More recently, Gogel (1978) and Goldberg & Pomerantz (1982) looked at proximity interactions among points of light. Rogers & Graham (1979) and Carpenter & Dugan (1983) studied motion parallax. Mori (1984) explored velocity effects in vector analysis. Shum & Wolford (1983), Wallach et al (1985), and Wallach & O'Leary (1985) decomposed vectors in various ways that Johansson (1985) claimed were consistent with his theory. Petzner (1983) has used the technique to explore information in ASL. Proffitt et al (1983) extended the vector analyses of points to those of shaded areas, and in a related development, Kaiser et al (1985) showed that the intuitive-physics results of McCloskey (1983) are due, in part, to differences between static line drawings and actual presentations of moving objects.

Within this framework an orthogonal issue has developed. Is information about motion merely kinematic or is it dynamic—i.e., are forces perceived and used? Several different lines of research suggest that forces are derivable from kinematic displays. Todd & Warren (1982) and Kaiser & Proffitt (1984) have shown that the ballistic motions of objects can be correctly determined. Runeson & Frykholm (1983) have shown that point-light displays of human actions reveal information about objects, otherwise unseen, that they interact with, and Freyd (1983), Freyd & Finke (1984), and Finke et al (1986) have shown dynamic effects for static and stroboscopically presented forms.
In the study of machine vision, vector analysis is used to recover object shape. Ballard & Kimball (1983) explored the perception of objects in motion, and Horn & Schunck (1981), Prazdny (1981, 1983a,b), Rieger & Lawton (1985), and Rieger & Toet (1985) have used such analysis in the study of optic flow for a moving observer, a topic I treat below.

PROBLEMS WITH POINTS AND DISPLACEMENTS This approach continues to have the problem of points, which Hildreth (1984, 1985), for one, circumvented by dealing with the motion of boundary edges and sorting out the possible vector fields generated. There is, however, a more pressing problem with the study of unrestricted object motion. Embedded in Gibson's (1979) invariance, in Johansson's (1978) decoding principles, and in most machine-vision research (but see Bennett & Hoffman 1985) is a rigidity assumption. Only in the domain of growth (Todd et al. 1980, Pittenger & Todd 1983) has rigidity been relaxed. But viewers do not always see rigid objects even when such objects are possible interpretations of the stimuli (Braunstein & Andersen 1984a, Hochberg 1986, Schwartz & Sperling 1983, Todd 1984b). Ullman (1984b) suggested that before rejecting the rigidity principle one should be sure 1 that no 3-D structure is perceived in a static display and 2 that motion is not misperceived. But this replaces a reasonable assumption about rigidity with a less reasonable one about veridical measurement and interpretation of motion. Research is needed on the boundary conditions of perceived nonrigidity over rigidity.

DISPLACEMENT FIELDS AND WAYFINDING A third approach to motion perception involves analysis of fields of vectors. Braunstein & Andersen (1981, 1984b) and Graham & Rogers (1982) explored depth effects through motion parallax in displacement fields, and Nakayama et al. (1985) and Ball & Sekuler (1982) explored motion discrimination effects that occur in viewing fields of moving dots. But most researchers have used this approach in attempts to characterize the information available about one's direction of movement during locomotion, a task I call wayfinding. Gibson (1950) and Calvert (1950) characterized the resultant motion of objects, often called optic flow in this context, as a set of vectors (flow lines of position, direction, and length) that point away from a focus of expansion. The location of this focus, they argued, provided the information for wayfinding.

1971, Johnston et al 1973) Regan & Beverley (1982) pointed out a reason. In certain environments there is always a focus of expansion where one looks, regardless of where one is going. This focus is due to vector cancellations resulting from eye rotations (Longuet-Higgins & Prazdny 1980, Koenderink & van Doorn 1981). Although Regan & Beverley’s analysis has problems (Priest & Cutting 1985), it is unlikely that the focus of expansion can be salvaged. Instead, Cutting (1986) proposed that certain properties of motion parallax and of serial fixations in optokinetic nystagmus can be used for wayfinding accuracy within one degree of visual angle, approximately that needed for running through a cluttered environment.

A PROBLEM FOR FIELDS It seems likely that the human visual system does analyze displacement fields, employing massively parallel neural systems (Ballard et al 1983). But research that only considers unnatural displacements across a projection surface, probing what the visual system sees (Regan & Beverley 1982, Nakayama et al 1985), deals only with unrepresentative manipulations of a perceptual system and may not apply to real perceptual problems.

Information for Perception and Action

Perception subserves activity. It is a major disappointment of modern psychology that studies of perception and action are rarely linked. The field analyses discussed above are a promise of linkage.

Visual perception tells us where we are within our surrounds, information we can use in changing our location and to get needed feedback. Among the few studies relevant to this area, Thomson (1983) and Elliott (1986) found conflicting results on the necessity of monitoring visual information during locomotion. D. Lee et al (1982, 1983) measured the use of visual information during long jumps and when hitting an accelerating ball. Lee & Reddish (1981) looked at visual information for plummeting gannets, and Warren et al (1986) found that, when moving over irregular ground, an observer adjusted the vertical component of gait, leaving velocity unchanged. The latter result means that information about time to contact (Lee 1980) with objects along the path is generally unchanged by terrain. Recent explorations of sensory-motor adaptations are also relevant to perception and action (Lackner 1985, Shebilske 1981, Shebilske et al 1983).

Information, Topology, and the "Geometry of the Visibles"

Two sideights on geometry and perception should be considered. One concerns topology, the only kind of geometric information not ultimately couched as visual angles. Koenderink (1984a), Lappin (1984), and particular-
ly Chen (1982, 1985) proposed that the visual system is quite sensitive to the
topology of form, segregating those objects with bounded external contour
from those that have holes. But Rubin & Kanwisher (1985) suggest that much
of Chen’s effect may be due to luminance differences in stimuli.

The second sideline concerns non-Euclidean geometry. Measurement of
visual angles in Euclidean systems depends on straight rays of light, or
projectors. But following from Reid’s (1764) “geometry of the visibles,”
Helmholtz’s (1866) discussion of curved visual space, and Luneburg’s (1947)
analyses of binocularity, a series of inquiries into Riemannian curvature has
ensued, some philosophical (Daniels 1974, Hopkins 1973, Suppes 1977);
Psychological efforts have focused on binocularity (Blank 1978) and the alley
problem (Indow 1982, Indow & Watanabe 1984), or on illusions (Watson
1978). The major issue was raised by Grunbaum (1973). How do these
non-Euclidean models of perceptual data map back onto the Euclidean experi-
ence we have of our normal surrounds? A possible resolution lies in whether
curvatures measured are within the tolerances of our visual system.

INFORMATION AND ICONIC MEMORY

A series of topics do not readily fit into the structure of my overview but are
important to any discussion of information and perception. Iconic memory
research is one, and it is in a state of transition. Thorough reviews of an
immense literature (Coltheart 1980, Long 1980) have given way less to
increased knowledge about the role of persistence in vision than to the mantra
of ecological validity (Haber 1983). Rather than synthesizing anything new,
let me point out several trends pertinent to my topic.

has shown that holistic information is retained better upon a single glance at a
photograph, that featural information is retained better upon multiple glances,
that visual persistence is worth about 110 ms of extra stimulus presentation,
and that luminance reduces both information available and information ex-
traction rate. Long & Wurst (1984) have shown that complexity in perimeters
and areas of figures affects the duration of visible persistence, but in reversed
fashion depending on whether the form is filled or not. Di Lollo (1984) and Di
Lollo & Hogben (1985) have studied the duration and suppression of persist-
ence, which others have studied in both stroboscopic (Burr 1981, Farrell
1984, Pomerantz 1983b) and apparent (Hogben & Di Lollo 1985) motion. In
this connection, the role of abrupt onsets continues to receive attention
(Kowler & Sperling 1983, Yantis & Jonides 1984), as do partial report
procedures (Bundeson et al 1984, Yeomans & Irwin 1985). In addition,
Weichselgartner & Sperling (1985) developed a continuous measure of visual
persistence.
INFORMATION IN NONVISUAL MODALITIES

Vision may be the least representative of our senses. Thus, a review of information and perception would ideally devote much effort and space to other modalities. Unfortunately, comparatively few studies on these other modalities are available.

Outside of work in auditory psychophysics and an occasional foray into ecological acoustics (Jenkins 1984, Warren & Verbrugge 1984), work in audition is focused on speech and music. In speech research a 30-year debate continues on whether information for speech is in the acoustic signal (Blumstein & Stevens 1980) or in the match of gestures to that signal (Liberman & Mattingly 1985). Longstanding interest continues in categorical perception (Massaro & Cohen 1983a, Repp 1984) and in selective adaptation (Samuel 1986). In music research, a livelier and more tractable endeavor, investigators study information with respect to tonality (Krumhansl 1985), sequence and contour (Wright & Bregman 1986, Boltz & Jones 1986, Deutsch & Fere 1981, Dowling 1978, Massaro et al 1980), and rhythm (Handel & Todd 1981, Povel 1981).

For touch and haptic perception Klatsky et al (1985) found, in keeping with Gibson (1966), that exploration and object recognition can be both rapid and accurate. Anstis & Tassinary (1983), Oldfield & Phillips (1983), and Benedetti (1985) explored tactile illusions. In olfaction and taste, soluble chemical compounds inform the perceiver, but we know remarkably little about how these modalities work (Carterette & Friedman 1978, Engen 1982). Natural conditions of tasting (licks, sips, and gulps) and smelling (sniffs) yield optimal conditions (Halpern 1983, Lang 1983), taste is not as sluggish as once thought (Kelling & Halpen 1983), entropy can be measured during adaptation (Norwich 1984), and there is a tight relation between chemosensation and cognition (Rabin & Cain 1984).

INFORMATION USE

Individual sources of information—whether experiential, statistical, or geometric—rarely stand by themselves. Unless all the information needed for a percept is contained in one prepackaged source (unlikely in everyday situations), perceptual information must exist in several forms. The perceiver must choose among or combine these forms.

Equivalence, Cognitive Penetrability, and Choice

Equivalent information has most often been discussed in the contexts of speech perception (Liberman 1982, Repp 1982) and visual perception of
objects in depth (Gogel 1984) In both, one "cue"—or physical source of information—can trade off against another, and perception remain unperturbed In speech and vision, trading relations might be taken as evidence for modularity of perceptual system Modular systems (Fodor 1983) are thought to be "cognitively impenetrable" (Pylyshyn 1984), data driven from the bottom up The perception of different stem lengths in the Muller-Lyer figure, for example, is not altered by knowing that they are identical Information specifying the percept is thought to be "encapsulated," and that knowledge cannot descend into the guts of the perceptual process Although the broad strokes of this example are compelling, careful analysis (Peterson & Hochberg 1983, Peterson 1986) of ambiguous line drawings and stereographic displays can show the role of intention on what otherwise might seem to be low-level visual processes Moreover, some percept-percept couplings (Hochberg 1974, Epstein 1982) demonstrate that higher-level assumptions and interactions may invade a module to determine perceptual outcomes But perhaps none of the assumptions made for perception need be cognitively based Johansson (1970) felt that they were hard-wired Gibson (1970) objected to Johansson’s decoding principles because they seemed to imply insufficient information in the stimulus But Cutting (1986) has suggested the opposite When more than one information source is available, a perceptual system must choose between (or combine) them In two viewing situations, entailing judgments of planar rigidity and of wayfinding as discussed above, different invariants equally specified a perceptual outcome, but the visual system most often chose only one

Additivity, Integration, and Multimodal Perception

When information is combined, additive models often fit best (Cutting & Millard 1984, Dosher et al 1986) Such additivity, however, is confined only to certain stimulus dimensions Garner (1974, Lasaga & Garner 1983), Pomerantz (1981. 1983a), and Kemler Nelson (Foard & Kemler Nelson 1984. L. Smith & Kemler 1978, J. Smith & Kemler Nelson 1984) have explored the nature of stimulus dimensions and their interaction in various tasks Some dimensions are often separable and allow for additivity, others are integral and do not Garner (1986) now regards integrality as a mandatory, and separability as an optional, secondary process Children often start out classifying stimuli in integral terms and later, as a result of developmental changes, move to strategies of separability But whereas it is relatively easy to see how integrality might work within a sensory modality, it is more difficult to anticipate such effects across them (but see Algol et al 1986) And more generally,
Ashby & Townsend (1986) provide an overview of the kinds of perceptual independence that provide a backdrop for discussions of stimulus additivity. Hornbostel (1927, p. 210) suggested that "it matters little through which sense I realize that in the dark I have blundered into a pigsty." This may be true for a folk phenomenologist, but to a psychologist it should matter quite a lot how such a conclusion might be reached, particularly since a single modality is not likely to provide all the information needed for pigsty perception. Marks (1978) gave us a thorough history of views on the unity of the senses, and research has been done on how information from the different senses might fashion unified percepts.

Two modalities are usually considered at a time, and one is almost always vision. The interrelation of vision and kinesthesia has been investigated by Lackner & Taublieb (1984) and Lackner & Shenker (1985), B. Jones & O'Neil (1985) explored bimodal and unimodal responses to texture, finding that visual and haptic information seemed to be additive. The interrelation of vision and audition in speech perception has received much attention since the discovery by McGurk & MacDonald (1976) that simultaneous presentation of an auditory /ba/ and a visual image of the lips forming /ga/ yields a compelling percept of /da/. Summerfield (1979) and Massaro & Cohen (1983b) replicated and extended the result. Dodd (1979) and Kuhl & Meltzoff (1984) explored it with infants, and Green & Miller (1985) looked at the influence of visual rate on the combined percept. The perception by infants of more general visual-auditory combinations has been explored by Spelke (1976, Spelke et al. 1983), and discussed by E. Gibson (1984).

Informative Displays

Finally, information in stimuli is important not only in terms of the perceiver but also in practical situations for the researcher. Given the increase in use of computer displays, it is good to see that some attention has been given to how they are perceived (Haber & Wilkinson 1982). Tufte (1983) provides new insights into how we might most effectively present scientific information in graphs and charts.

Acknowledgments

Preparation of this review was supported by the National Institutes of Mental Health grant MH37467. It is dedicated to the memory of Paul Kolers. I thank Nicola Bruno, Jennifer Freyd, Eleanor Gibson, Bruce Halpern, and Joseph Lappin for discussion and comments.
Literature Cited

Allik, J., Dzhalarov, E. N. 1984 Motion direction identification in random cinematograms A general model J Exp Psychol Hum Percept Perform 10 378–93
Andersen, G. J., Braunstein, M. 1985 Induced self-motion in central vision J Exp Psychol Hum Percept Perform 11 122–32
Anstis, S. M., Tassinary, L. 1983 Pouting and smiling distort the tactile perception of facial stimuli Percept Psychophys 33 295–97
Ashby, F. G., Townsend, J. T. 1986 Varieties of perceptual independence Psychol Rev 93 154–79
Atteave, F. 1954 Some information aspects of visual perception Psychol Rev 61 183–93
Atteave, F. 1982 Pragnanz and soap bubble systems A theoretical exploration See Beck 1982a, pp 11–29
Ball, K., Sekuler, R. 1982 A specific and enduring improvement in visual motion discrimination Science 218 697–98
Balzano, G. J. 1980 The group-theoretic description of 12-fold and microtinal pitch systems Comput Music J 4 66–84
Banks, M., Stephens, B., Hartmann, E. 1985 The development of basic mechanisms of pattern vision Spatial frequency channels J Exp Child Psychol 40 501–27
Barnard, S. T. 1985 Choosing a basis for perceptual space Comput Vision Graph Image Proc 29 87–99
Beck, J., Hope, B., Rosenfeld, A., ed 1983a Human and Machine Vision NY Academic 567 pp
Bennett, B., Hoffman, D. 1985 The computation of structure from field-axis motion Nonrigid structure Biol Cybern 51 293–300
Bergstrom, S. S., Gustafsson, K. A., Putansu, J. 1984 Information about threedimensional shape and direction of illumination in a sine wave grating Perception 13 129–40
Berkeley, G. 1709 An essay towards a new theory of vision See Fraser 1871, pp 25–112
Berkeley, G. 1733 The theory of vision, or visual language, vindicated and explained See Fraser 1871, pp 399–400
Besl, P. J., Jain, R. C. 1986 Invariant surface characteristics for 3D object recognition in range images Comput Vision Graph Image Proc 33 1–48
Biederman, I. 1985 Human image understanding Recent research and a theory Comput Vision Graph Image Proc 32 29–73
Brady, M., ed 1981 Computer Vision Amsterdam North-Holland 508 pp
Braunstein, M. 1962 Depth perception in rotating dot patterns Effects of numerosity and perspective J Exp Psychol 64 415–520
Braunstein M. Andersen, G 1984a A counterexample to the rigidity assumption in the
visual perception of structure from motion Perception 13 213-17
Braunstein, M. Andersen, G 1984b Shape
and depth perception from parallel pro-
jections of three-dimensional motion J Exp Psychol Hum Percept Perform 10 749-60
Bregman, A S. Mills, M 1982 Perceived
movement The Flintstone constraint Per-
ception 11 201-6
Bredatz, P 1966 Textures NY Dover 11-
pp. 112 plates
Bruce, V G Green, P 1985 Visual Percep-
tion Physiology Psychology and Ecology Lon-
don Erlbaum 369 pp
Brunswick, E 1956 Perception and the Re-
presentative Design of Psychological Ex-
periments Berkeley Univ Calif 154 pp
Bulhart, H. Leeuwenberg, E Restle, F
1981 Coding theory of visual pattern com-
pletion J Exp Psychol Hum Percept Per-
form 7 241-74
Bulhart, H. Leeuwenberg, E Restle F
1983 Analysis of ambiguity in visual pat-
tern completion J Exp Psychol Hum Per-
cept Perform 9 980-1000
Bundeson, C. Pedersen, L F. Lassen, A
1984 Measuring efficiency of selection
from briefly exposed visual displays A
model for partial report J Exp Psychol
Hum Percept Perform 10 329-39
Burtt, D C 1981 Temporal summation of
moving images by the human visual system
Proc R Soc London Ser B 211 321-30
Burtt, P J. Adelson, E H 1983a The Lapla-
cian pyramid as a compact image code
IEEE Trans Commul 31 532-39
Burtt, P J. Adelson, E H 1983b A multi-
resolution spline with application to imag-
mosaics ACM Trans Graph 2 217-36
Burton, H E 1945 The optics of Euclid J
Opt Soc Am 35 357-72
Butler, D L 1982 Predicting the perception
of three-dimensional objects from the
geometrical information in drawings J
Exp Psychol Hum Percept Perform 8
674-92
Caelli, T 1981 Visual Perception Theor-
and Practice Oxford Pergamon 197 pp
Caelli, T 1985 Three processing character-
ist of visual texture segmentation Spat Vision
J 19-30
Calvert, E S 1950 Visual aids for landing in
bad visibility with particular reference to the
transition from instrument to visual flight
Trans Illus Eng Soc London 15 183
219
Carlile, J. Paciorek, J 1978 Planar
gometric projections and viewing trans-
formations Comp Surv 10 465-502
Carpenter, D L. Dugan, M P 1983 Motion
parallax information for direction of rotation in
depth Order and direction components
Perception 12 559-69
Carterette, E. Friedman, M eds 1978
Handbook of Perception Vol VIA Tasting and
Smelling NY Academic 321 pp
Cassirer, E 1944 The concept of group and the
theory of perception Philos Phenom Rev 5 1-35
Chen, I 1982 Topological structure in visual
perception Science 218 699-700
Chen, L 1985 Topological structure in the
perception of apparent motion Perception 14
181-92
Clocksin, W F 1980 Perception of surface
slant and edge labels from optic flow A
computational approach Perception 9 253-70
Cohen, M A. Grossberg S 1984 Neural
dynamics of brightness perception Fea-
tures boundaries, diffusions, and reso-
nance Percept Psychophys 36 428-56
Coltheart, M 1980 Iconic memory and vis-
ible persistence Percept Psychophys 27
183-228
Cooper, L A. Shepard, R N 1984 Turning
something over in the mind ScI Am
251(6) 106-14
Cutting, J E 1981 Coding theory adapted to
gait perception J Exp Psychol Hum Per-
cept Perform 7 71-87
Cutting J E 1982a Blowing in the wind
Perceiving structure in trees and bushes
Cognition 12 25-44
Cutting, J E 1982b Two ecological perspec-
tives Gibson vs Shaw and Tourney
Am J Psychol 95 199-222
Cutting J E 1986 Perception with an Eye
for Motion Cambridge, Mass MIT Press
321 pp
Cutting, J E Millard, R T 1984 Three
gradients and the perception of flat and
curved surfaces J Exp Psychol Gen
113 198-216
Cutting J E Proffitt D R 1982 The mini-
 mum principle and the perception of abso-
lute, common, and relative motions Cogn
Psychol 14 211-46
Daniels, N 1974 Thomas Reid s Inquiry
NY Burt Franklin
Descartes, R 1649 The passions of the soul
In The Philosophical Works of Descartes
transl E Haldane 1955, pp 329-427 NY
Dover
Deutsch, D. Ferre J 1981 The internal
representation of pitch sequences in tonal
music Psychol Rev 88 503-22
Diacos, P. Friedman, D 1981 On the sta-
istics of vision the Julesz conjecture J
Math Psychol 24 112-38
Dr Lollo, V 1984 On the relationship be-
tween stimulus intensity and duration of vis-
Garnier, W. R. 1970 Good patterns have few alternatives: Am. Sci. 58: 34–42
Gordon, B R, Caramazza, A 1985 Lexical access and frequency sensitivity Frequency saturation and open/closed class equivalence Cognition 21 95–115
Graham, M, Rogers, B 1982 Simultaneous and successive contrast effects in the perception of depth from motion-parallax and stereoscopic information Perception 11 247–62
Granrud, C E, Yonas, A., Opland, E A 1985 Infants' sensitivity to the depth cue of shading Percept Psychophys 37 415–19
Green, B F 1961 Figure coherence in the kinetoscopic depth effect J Exp Psychol 62 272–82
Green, K P, Miller, J L 1985 On the role of visual rate information in phonetic perception Percept Psychophys 38 269–76
Gregory, R H 1974 Concepts and mechanisms in Perception NY Scribners 669 pp
Grimson, W E 1981 From Images to Surfaces Cambridge, Mass MIT Press 274 pp
Grimson, W E 1983 Surface consistency constraints in vision Comput Vision Graph Image Proc 24 28–51
Grossberg, S, Mingolla, E 1985a Neural dynamics of form perception Boundary completion, illusory figures, and neon color spreading Psychol Rev 92 173–211
Grossberg, S, Mingolla, E 1985b Neural dynamics of form perception Textures boundaries, and emergent segmentations Percept Psychophys 38 141–71
Grunbaum, A 1973 Philosophical Problems of Space and Time Boston Reidel 884 pp 2nd ed
Guzman, A 1969 Decomposition of a visual scene into three-dimensional bodies In Automatic Interpretation and Classification of Images, ed A Grasso, pp 245–76 NY Academic
Haber, R N 1983 The impending demise of the icon A critique of the concept of iconic storage Behav Brain Sci 6 1–54. 8 188–92
Haber, R N, Wilkinson, L 1982 The perceptual components of computer graphics displays IEEE Comp Graph Appl 2 23–35
Halpem, B P 1983 Tasting and smelling as active, exploratory sensory processes Am J Otalaryngol 4 246–49
Hamilton, W 1859 Lectures on Metaphysics. Vol II Edinburgh Blackwood & Sons 568 pp
Harmon, L D 1973 The recognition of faces Sci Am 222(2) 70–82
Hatfield, G, Epstein, W 1985 The status of the minimum principle in the theoretical analysis of visual perception Psychol Bull 97 155–86
Heil, J 1983 Perception and Cognition Berkeley Univ Calif Press 243 pp
Helmholtz, H von 1866 Physiological Optics Vol 3 3rd ed, transi J Southall, 1925 Menasha, Wis Optical Soc Am 736 pp
Helmholtz, H von 1894 The origin and correct interpretation of our sense impressions See Kahl 1971, pp 501–12
Hildreth, E C 1985 Computation underlying the measurement of visual motion Artif Intell 23 309–34
Hochberg, J 1981 Levels of perceptual organization See Kubovy & Pomerantz 1981, pp 255–78
Hochberg, J 1982 How big is a stimulus? See Beck 1982a, pp 191–217
Hochberg, J 1984 Form perception experience and explanations See Dodwell & Caelli 1984, pp 1–30
Hochberg, J 1986 Visual perception of real and represented objects and events In Behavioral and Social Sciences Fifteen Years of
Discovery, ed N Smelser, D Gerstein Washington, DC Natl Acad Press In

Hochberg, J, McAlister, E 1953 A quantitative approach to figural "goodness" J Exp Psychol 46 361–64

Hoffman, D, D, Richards, W A 1984 Parts of recognition Cognition 18 65–96

Hoffman, W C 1966 The Lie algebra of visual perception J Math Psychol 3 65–98, errata, 4 348–49

Hogben, J H, Di Lollo, V 1985 Suppression of visible persistence in apparent motion Percept Psychophys 38 450–60

Hopkins, J 1973 Visual geometry Phil Rev 82 3–34

Horn, B K, Schunck, B G 1981 Determining optic flow See Brady 1981, pp 184–204

Hornbostel, E von 1927 The unity of the senses See Ellis, 1938. pp 210–16

Indow, T 1982 An approach to geometry of visual space with no a priori mapping functions Multidimensional mapping according to Riemannian metrics J Math Psychol 26 205–36

Indow, T, Watanabe, T 1984 Parallel- and distance-alleys with moving points in the horizontal plane Percept Psychophys 35 144–54

Jenkins, J J 1984 Acoustic information for objects, places, and events See Warren & Shaw 1984b, pp 115–38

Johansson, G 1950 Configurations in Event Perception Uppsala Sweden Almqvist & Wikells 226 pp

Johansson, G 1970 On theories of visual space perception a letter to Gibson Scand J Psychol 11 67–74

Jones, B, O’Neil, A 1985 Combining vision and touch in texture perception Percept Psychophys 37 66–72

Jones, M R 1981 Music as a stimulus for psychological motion Part I Some determinants of expectancies Psychomusiconology 1 34–51

Julesz, B 1975 Experiments in the visual perception of texture Sci Am 232(4) 34–43

Julesz, B 1981 Textons, the elements of texture perception and their interactions Nature 290 91–97

Julesz, B, Bergen, J R 1983 Textons, the fundamental elements in preattentive vision and perception of textures Bell Syst Tech J 62 1619–45

Kahneman, D, Slovic, P, Tversky, A 1982 Judgment under Uncertainty Heuristics and Biases Cambridge Cambridge Univ Press 555 pp

Kaiser, M K, Proffitt, D R 1984 The development of sensitivity to causally-relevant dynamic information Cogn Dev 5 5 1614–24

Kanatani, K 1984 Detection of surface orientation and motion from texture by a stereotactical technique Artif Intell 23 213–37

Keller, G, Henn, V 1984 Self-motion sensation influenced by visual fixation Percept Psychophys 35 279–85

Kellng, S T, Halpern, B P 1983 Taste flashes Reactions times, intensity, and quality Science 219 412–14

Koenderink, J J, van Doorn, A J 1982 The shape of smooth objects and the way contours ends Perception 11 129–37
Koffka, K 1935 Principles of Gestalt Psychology NY Harcourt 720 pp
Kolers, P A 1983 Some features of visual form Comput Vision Graph Image Proc 23 15–41
Kower, E, Sperling, G 1983 Abrupt onset do not aid visual search Percept Psychophys 34 307–13
Krumhansl, C L 1978 Concerning the applicability of geometric models to similarity data The interrelationship between similarity and spatial density Psychol Rev 85 445–63
Krumhansl, C L 1984 Independent processing of visual form and motion Perception 13 335–46
Krumhansl C L 1985 Perceiving tonal structure in music Am Sci 73 371–78
Kunl, P K, Melzof, A N 1984 The intermodal representation of speech in infants Infant Behav Dev 7 361–81
Kulpe, O 1985 Outlines of Psychology transl E Trichener London Swan Sonnenschein
Lackner, J R, Shenker, B 1985 Pro-pronoucing influences on auditory and visual spatial localization J Neurosci 5 579–83
Lackner, J R, Taublieb, A 1984 Influence of vision on vibration-induced illusions of limb movement Exp Neurol 85 97 106
Lang, D 1983 Natural sniffing gives optimum odor perception for humans Perception 12 99–117
Lappin, J S 1984 Reflections on Gunmar Johansson’s perspective on the visual measurement of space and time See Warren & Shaw 1984b, pp 67–86
Lappin, J S, Doner, J F, Kottas, B 1 1980 Minimal conditions for the detection of structure and motion in three dimensions Science 209 717–19
Lappin J S, Fuqua, M A 1984 Accurate visual measurement of three-dimensional moving patterns Science 221 480–82
Lee, C H Rosenfeld, A 1985 Improved methods of estimating shape from shading using the light source coordinate system Artif Intell 26 125–43
Lee, S J, Haralick, R M, Zhang, M C 1985 Understanding objects with curved surfaces from a single perspective view of boundaries Artif Intell 26 145–69
Leeuwenberg, E 1971 A perceptual coding language for visual and auditory patterns Am J Psychol 84 307–47
Leeuwenberg, E, Buffart, H, eds 1978 Formal Theories of Visual Perception Chichester Wiley 345 pp
Leyton, M 1984 Perceptual organization as nested control Biol Cybern 51 141–52
Leyton, M 1985 Generative systems of analyzers Comput Vision Graph Image Proc 31 201–14
Leyton, M 1986 Principles of information structure common to six levels of the human cognitive system Info Sci 38 1–120
Liberman, A M 1982 On finding that speech is special Am Psychol 37 148–66
Locke, J 1690 An Essay Concerning Human Understanding Reprinted 1853 Philadelphia James Kay 324 pp
Loftus, G R 1985 Picture perception Effects of luminance on available information and information-extraction rate J Exp Psychol Gen 114 342–56
Long, G M 1980 Icon memory A review and critique of the study of short-term visual storage Psychol Bull 88 785–820
Long, G M , Wurst, S A 1984 Complexity effects on reaction-time measures of visual persistence Evidence for peripheral and central contributions Am J Psychol 97 537–61
Lord, E A , Wilson, C B 1984 The Mathematical Description of Shape and Form Chichester Ellis Horwood
Luneburg, R K 1947 Mathematical Analysis of Binocular Vision Princeton, NJ Princeton Univ Press 104 pp
MacFarland, W N , Loew, E R 1983 Wave produced changes in underwater light and their relations to vision Environ Biol Fish 8 173–84
Mach, E 1886 The Analysis of Sensations Transl S Waterlow Reprinted 1959 NY Dover 380 pp
Machlup, F , Mansfield, U , ed 1983 The Study of Information NY Wiley 743 pp
McArthur, D J 1982 Computer vision and perceptual psychology Psychol Bull 92 283–309
McClelland, J L 1985 Putting knowledge in its place A scheme for programming parallel processing structures on the fly Cogn Sci 9 113–46
McClelland, J L , Elman, J 1986 The TRACE model of speech perception Cogn Psychol 18 1–86
McCloskey, M 1983 Intuitive physics Sci Am 248(4) 122–30
McGurk, H , MacDonald, J 1976 Hearing lips and seeing voices Nature 264 746–48
Mandelbrot, B B 1983 The Fractal Geometry of Nature NY Freeman 468 pp
Marks, L E 1978 The Unity of the Senses NY Academic 289 pp
Marr, D 1982 Vision San Francisco Freeman 397 pp
Massaro, D W , Cohen, M M 1983b Evaluation and integration of visual and auditory information in speech perception J Exp Psychol Hum Percept Perform 9 753–71
Massaro, D W , Kallman, H , Kelly, J 1980 The role of tone height, melodic contour, and tone chroma in melody recognition J Exp Psychol Hum Percept Perform 6 77–90
Mull, J 1829 Analysis of the Phenomena of the Human Mind, Vol I 2nd ed, 1878 London Longmans, Green, Reader, & Dyer 453 pp
Mingolla, E , Todd, J T 1986 Perception of solid shape from shading Biol Cybern In press
Mori, T 1984 Change of a frame of reference with velocity in visual motion perception Percept Psychophys 35 515–18
Mori, T 1985 An active method of extracting egomotion parameters for optical flow Biol Cybern 52 405–7
Morton, J 1969 Interaction of information in word recognition Psychol Rev 76 165–78
Nakayama, K , Silverman, G , MacLeod, D , Mulligan, J 1985 Sensitivitiy to shearing and compressive motion in random dots Perception 14 225–38
Natsoulas, T 1984 Towards the improvement of Gibsonian perception theory J Theory Soc Behav 14 231–58
Norwich, K 1984 The psychophysics of taste from the entropy of the stimulus Percept Psychophys 35 269–78
Oldfield, S , Phillips, J 1983 The spatial characteristics of tactile form perception Perception 12 615–26
Palmer, S E 1982 Symmetry, transformation, and the structure of perceptual systems See Beck 1982a, pp 95–144
Palmer, S E 1983 The psychology of perceptual organization A transformational

Regan, D M., Beverley, K 1982 How do we avoid confounding the direction we are looking and the direction we are moving? Science 215 194–96.

Reid, T 1764 Inquiry into the human mind. See Hamilton 1895, pp. 95–211.

Rieger, J H, Toet, L 1985 Human visual navigation in the presence of 3-D motions Biol Cybern 52 377–81
Rock, I 1983 The Logic of Perception Cambridge, Mass MIT Press 365 pp
Rock, I 1985 Perception and knowledge Acta Psychol 59 1–20
Rogers, B, Graham, M 1979 Motion paraol as an independent cue for depth perception Perception 8 125–34
Sagi, D, Julesz, B 1985 Detection versus discrimination of visual orientation Perception 14 619–28
Samuel, A 1986 Red herring detectors and speech perception In defense of selective adaptation Cogn Psychol 18 In press
Santen, J van, Sperling, G 1985 Elaborated Reicherdt detectors J Opt Soc Am A 2 300–21
Schwartz, B, Sperling, G 1983 Lumiance controls the perceived 3-D structure of dynamic 2-D displays Bull Psychon Soc 21 456–58
Shannon, C E, Weaver, W 1949 The Mathematical Theory of Communication Urbana Univ Illinois Press 117 pp
Shebilske, W L, Karmhoi, C, Profitt, D R 1983 Induced esophageal shifts in eye convergence and illusory distance in reduced and structured viewing conditions J Exp Psychol Hum Percept Perform 9 270–77
Shepard, R 1984 Ecological constraints on internal representation Resonant kinematics of perceiving, imagining, thinking, and dreaming Psychol Rev 91 417–47
Shum, K, Wolford, G 1983 A quantitative study of perceptual vector analysis Percept Psychophys 34 17–24
Skynns, B 1975 Choice and Chance Belmont Calif Wadsworth 165 pp 2nd ed
Smith, J D, Kemler Nelson, D G 1984 Overall similarity in adults' classification The child in all of us J Exp Psychol Gen 113 137–59
Sober, E 1975 Simplicity London Oxford 189 pp
Spelke, E 1976 Infants' intermodal perception of events Cogn Psychol 8 553–60
Spelke, E, Born, W, Chu, F 1983 Perception of moving, sounding objects by four-month-old infants Perception 12 719–32
Sperling, G 1971 The description and luminous calibration of cathode ray oscilloscope visual displays Behav Res Methods Instrum 3 148–50
Sperling, G 1980 Bandwidth requirements for video transmission of American Sign Language and finger spelling Science 210 797–99
Sperling, G, Santen, J van, Burt, P 1985b Three theories of stroboscopic motion detection Spat Vision 1 47–57
Stevens, K A 1983a Evidence relating sub-
jective contours and interpretations involving interposition Perception 12 481–500
Stevens, K A 1983b Surface tilt (the direction of slant) a neglected psychological variable Percept Psychophys 33 241–50
Stevens, K A 1984 On gradients and texture "gradients" J Exp Psychol Gen 113 221–24
Stoffregen, T 1985 Flow structure versus retinal location in the optical control of tangential J Exp Psychol Hum Percept Perform 11 534–65
Summerfield, Q 1979 Use of visual information for phonetic perception Phonetica 36 314–31
Suppes, P 1977 Is visual space Euclidean? Synthese 35 397–421
Ternus, J 1926 The value of a problem of phenomenal identity See Ellis 1938, pp 149–60
Todd, J T 1982 Visual information about rigid and nonrigid motion A geometric analysis J Exp Psychol Hum Percept Perform 8 238–52
Todd, J T 1984a Formal theories of visual information See Warren & Shaw 1984b, pp 87–102
Todd, J T 1984b The perception of three-dimensional structure from rigid and nonrigid motion Percept Psychophys 36 102
Todd, J T, Mingolla, E 1983 The perception of surface curvature and direction of illumination from patterns of shading J Exp Psychol Hum Percept Perform 10 34–49
Trueswell, A 1982 Perceptual grouping and attention in visual search for features and for objects J Exp Psychol Hum Percept Perform 8 194–214
Treisman, A 1985 Preattentive processing in vision Comput Vision Graph Image Proc 31 167–77
Treisman, A, Paterson, R 1984 Emergent features, attention, and object perception J Exp Psychol Hum Percept Perform 10 12–31
Ullman, S 1979 The Interpretation of Visual Motion Cambridge Mass MIT Press 229 pp
Ullman, S 1980 Against direct perception Behav Brain Sci 3 373–415
Ullman, S 1983 Recent computational studies in the interpretation of structure from motion See Beck et al 1983a, pp 459–80 Ullman, S 1984a Maximizing rigidity the incremental recovery of 3D structure from rigid and nonrigid motion Perception 13 255–74
Ullman, S 1984b Rigidity and misperceived motion Perception 13 219–20
Uttal, W R 1983 Visual Detection of Form Hillsdale, NJ Erlbaum 163 pp
Uttal W R 1985 The Detection of Nonplanar Surfaces in Visual Space Hillsdale, NJ Erlbaum 172 pp
Wallach, H, O'Leary A 1985 Vector analysis of rotary motion perception Percept Psychophys 38 47–54
Warten W H, Shaw, R E 1984a Events and encounters as units of analysis for ecological psychology See Warren & Shaw 1984b, pp 1–27

Watson, A B 1978 A Riemann geometric explanation of the visual illusions and figural after-effects. See Leeuwenberg & Buffart 1978, pp. 139–69

Williams, D R., Collier, R 1983 Consequences of spatial sampling by a human receptor mosaic. *Science* 221 385–87

Zucker, S W 1984 Two constraints on early orientation selection in dot patterns. See Dodwell & Caelli 1984, pp 283–300

