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Introduction

This book is about information. The information of interest is used in
visual perception, its locus is in the world as projected to the eye, and
it is revealed through motion of objects or movement of an observer.
In an effort to stir things up a little, 1 like to use the term external
representation to stand for information about objects and events. Such
information represents them and is ready for use by a perceptual system.
The notion of internal representation, so common and useful to all fields
of cognitive science, has little currency here. Proper consideration of
external representation, 1 claim, is logically prior to internal represen-
tation and to information processing as well; we must know what
information is used before we can understand how it is processed.

The study of perceptual information needs a methodology. Much
effort has been expended in that of classical psychophysics, but it is
now almost common to say that this was misguided, at least as an
attempt to understand the match of perceptual systems to biologically
important dimensions of the world. 1 do not entirely share this view.
To be sure, the selection of variables most easily defined by the physicist,
rather than by the perceiver’s needs, may lead to nowhere of general
interest. Information for a perceiver is not in frequency, intensity, mass,
extent, or time; it is distributed across them. Nonetheless, psychophysical
methods are without parallel for revealing information used in per-
ception. Moreover, these can be applied to computer graphics, which,
with their ability to control and simulate visual environments, has freed
us forever from the necessity of using simple stimuli varied in simple
ways.

I think it suits us best to couch information in mathematical terms.
The math itself provides formless and timeless expressions of what the
world offers its inhabitants; math is the essence of structure. But care
is important here. Mathematics is too powerful to provide constraints
on information; it models truth and drivel with equal felicity. Thus
constraints are needed. In visual perception constraints on information
are found in geometric optics, cast in terms of projected angles between
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points and lines. But even here there are problems: All projections
produce distortions, a fact that has seemed by many to falsify the idea
that information in optic relations is sufficiently trustworthy to guide
perception. Yet I claim that this is a misconstrual of the natural situation.
Although distortions can be found in static cross sections of the optic
array, they seem less noticeable (or less disruptive) in dynamic images.
There, movement of the observer, motions of an object, or both reveal
three-dimensional relations. Projective geometry is the body of rules
for that revelation, and the perceptual system appears to know some
of them,

The typical notion about information in proximal images is that in-
formation is correlated with affairs in the distal world. Discussions of
this view date at least from Berkeley and have continued to the present.
Issues are rehearsed in terms of signs or cues to the perception of this
and that, and we can almost imagine a huge covariance matrix for
every possible proximal-distal co-occurrence. All entries in this matrix
are typically thought to be nonzero and nonunity; in particular, entries
of 1.00 are forbidden. If this restriction is true, perception and the
perceptual theorist are in tough straits: Perceptual process can be only
inferential, where some grounds (or premises) for each inference are
based on mental construction rather than on what is presented to the
eye and constrained by the biology of the visual system.

An opposing view is that some entries in this proximal-distal matrix-

are unity. These are invariant sources of information that specify the
object or event in the external world. The visual system needs only to
be constrained through evolution to pick it up (process it}). For every
invariant that may exist, perception gets easier to understand and to
implement on a machine. With sufficient numbers a perceptual system
that does not need cognition to work properly can be both imagined
and (at some point} built. Large stores of correlational information are
not needed, and large general-purpose processors are freed for other
tasks. Thus in my view perception is largely data driven, bottom up,
in everyday life. But this is not to say that all perception must function
this way, nor that all entries in this matrix need be 1.00. I claim only
that there are perceptual invariants and that their number turns out to
be nontrivially small. Gibson, of course, presented essentially this same
view. What is unusual to my approach is that I take information to be
richer than even he allowed: For any object or event there may be
more than one invariant associated with it.

This book is divided into four sections. In the first five chapters |
consider some philosophy, psychology, and intellectual history behind
important concepts in visual perception—information, projections, the
optic array, pictures, space, and invariants. In chapters 6 through 9
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I discuss one type of optic flow, that for a moving object and a stationary
observer, and focus on a particular invariant from projective geometry
and a correlate of it. A surprise finding is that observers seem to use
this invariant, the cross ratio, in some situations but shun its use in
others. In chapters 10 through 13 I discuss a second type of optic flow,
that of a stationary environment and a moving observer, and address
the problem of how an individual might find his or her way. Evidence
is reviewed against the general use of a topological invariant, the focus
of expansion, and formalisms and empirical evidence are summoned
in favor of another, differential motion parallax. And in the final two
chapters 1 revert to the style of the first five to consider classes of
perceptual theory, direct and indirect perception, and their historical
roots. A new class of theory is then proposed: directed perception, which
considers the world so rich in information, even invariants, that dis-
cussions of algorithms and informational processing again become cen-
tral to perception. In essence, information overspecifies perception but
underspecifies process.

And basically that is what this book is about. Because the history of
perception is so rich, I often delve into what many will regard as ancient
sources in the hope of making contemporary points. And many con-
temporary works I gloss over or discuss not at all. This book, then,
takes on a somewhat idiosyncratic air. For this I apologize, but my goal
is not to be representative; instead, | wish to present some foundations
for a new view of perception.
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Information for Vision

Nothing can be known concerning the things of the world without the
power of geometry.

Roger Bacon (1260; in Burke 1928, p. 234)
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Information

The world is a plenum. It is lavishly furnished with things that are
informative and meaningful to its inhabitants at every turn. In particular,
the visual world for humankind is rich with objects and events to which
we are attuned. QOur visual system collects information about what is
optically displayed and does so according to our needs as they have
evolved from our earliest forebears. It is largely through vision that
we know our environment and our physical place within it.

But how is it that we understand the visual patterns that surround
us? Why does our visual system work so well? What is the nature of
the surrounding information such that it has meaning for us? These
are some of the difficult questions that face anyone who studies per-
ception. In fact, there was an almost uninterrupted stretch of more than
two thousand years when all philosophers worth their salt felt it nec-
essary to consider them.’ The reason for their long-term interest is that
such questions tap some of the deepest issues of philosophy. Indeed,
they run to the heart of metaphysics.

Metaphysics and Perception

The term metaphysics means “what comes after physics.”* This handy
phrase sets an interesting stage. Consider a rough sketch for a highly
desirable, albeit impossible goal—a complete understanding of per-
ception. At a minimum, such an understanding wants, first, a description
of what is perceived and, second, an explanation of how we perceive
it, even act on it. The first entails discussion of objects and events in
our surround, and those can be discussed in physical terms appropriate
to the organism.’> What comes after the physics is perception. In this
manner, the study of perception is the study of metaphysics.

To say that perception is metaphysics is, of course, a ruse. Yet it is
not a play on words to suggest that perception and metaphysics are
intimately tied. Metaphysics divides many ways. Older traditions divide
it into ontology, cosmology, and epistemology.® These terms can be
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rephrased as three simple queries: What is there? Where did it come
from? And how do we know it? Anyone interested in these questions
is bound to be interested in perception, and anyone interested in per-
ception should be interested in these questions. Of course, I cannot
consider them in broad scope, but [ will focus on them with regard to
a central concept in perception—information.

What Is There?

Ontology is the study of things. It is almost inescapable that, if we
perceive a particular entity, it should count in our ontology. Why do
we perceive it as we do? This is yet another deep query, posed most
clearly by Koffka (1935) and picked up by Gibson (1950, 1971b) and
many others. Any respectable answer to Koffka’s question must suggest
that we are predisposed to parse the world into the kinds of objects
and events that are meaningful to us. This is a fine start, but a perceptual
psychologist cannot stop here. Such an answer, if the author’s intent
is for it to stand as final word, is nearly as anti-intellectual as it is glib.
Unsatisfyingly, it hints that ultimate answers to questions of perception
are found in other fields. In turn, it suggests that psychological ap-
proaches to perception are a peripheral scientific enterprise to be swept
up in answers of biclogy. To me, this seems unsavory and unlikely.
Thus the psychologist and others interested in perception, such as the
philosopher or computer scientist, must go further. Any answer to basic
ontological questions, I suggest, must consider information about objects
and events.

Information informs. The roots of this idea mean to instill form within,
and I like this idea a lot. But therein lie myriad traps; perhaps no word
in philosophy is more slippery than the word form. Nevertheless, let
me take it to mean the three-dimensional shape of an object. Following
from definition, then, geometric shapes are instilled in visual infor-
matjon. Instillation in turn invokes the idea of essences or abstractions
that represent objects. Later I will claim and try to demonstrate that
such abstractions specify the objects that they represent. But here I
claim only that perception is the process of picking up that information,
with the end result of having the form, in some sense, instilled within
the perceiver. Thus visual perception is the study of the mapping from
perceptible external objects, through optic information that represents
them, to the observer who uses that information for his or her purposes.
Geometry is the vehicle of this instillation. Not only is geometry useful
in describing the object, encoding it in equations for the purposes of
description by the experimenter, but also, I suggest, observers can decode
that information along lines which demonstrate that the human visual
system is a sophisticated geometry-analyzing engine.

Information 5

Returning to metaphysics, my emphasis on information makes it a
special ontological category. One way to coordinate discussion of the
particular categories I am interested in—perceived objects and percep-
tual information—is to be vigilant in use of terms. A handy way to
hold onto the difference is to remember that we perceive objects, but,
we pick up information. By this I mean that our experience is full of
objects and events but that our visual system responds to mathematical,
typically geometric relations.

Where Does Information Come From? -

Cosmology, or the study of origins and the nature of the universe, is
well beyond the normal scope of psychology. Nonetheless, regardless
of how silly it may seem, I must ask about the origin of information.
It seems to me that any answer must contain reciprocal parts. Information
comes from the environment during a given perceptual act but also must
be tailored to the perceiver, constrained and reduced from the indefi-
nitely large number of possibilities by the perceiver’s ability to pick it
up and find it useful. Thus the adequacy of classes of information to
perception comes from the perceiver, shaped by evolution and learning,
In sum, information is shaped by the mutuality of perceiver and en-
vironment (Gibson 1979).

Information, 1 claim, is found in the geometric relations of parts of
objects to each other and to their surrounds. Rules of geometry govern
these relations presented to a perceiver, and it is the discovery of those
rules applicable to visual perception that is a major psychological task.
Among the most important, I suggest, are the ones allied to laws of
optics and projective geometry, which I begin to discuss in chapter 2
and continue to elaborate in following chapters. The problem of pro-
jections is one familiar since Kepler and Descartes: The world has three
dimensions but our retinas only two. Preservation of information
through such dimensional reduction can be discussed only in terms
lawful to projections. Thus how we come to perceive dynamic projec-
tions in a tractable manner stems from the fact that two-dimensional
projections of three-dimensional environments change in lawful ways.
A central task of the study of vision is to discover those ways.

How Do We Know gbout stlble Ob]ects?

Epistemology, or the study of the nature and grounds of knowledge
is the branch of metaphysics easiest to relate to perception. We know
the objects around us in part because we can perceive them. In fact,
it is sometimes said that to perceive is to know.® I have deep sympathy
with this idea, but it rankles many. To warrant the name, knowledge
ought to be true. But is what we perceive true? Answers to this question
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typically entail justification of belief about reality. And these answers
go beyond what is perceived into what can be known without doubt.
This latter realm, I believe, is an utter morass best left to philosophy.
Nevertheless, there is something cogent about the idea that knowledge
and perception are intimately tied. Without perception it is difficult to
know how and where any study of epistemology can begin or end.
The mind would be an entirely solipsistic organ, blowing its notes in
a strange unreality.®

In summary, questions posed by ontology, cosmology, and episte-
mology are fundamental to perception, and perception is fundamental
to them. Nevertheless, they are not the kinds of questions psychologists
try to answer by dropping all and scurrying into their laboratories, For
the experimentalist these questions and the answers they engender are
less than completely satisfying. Our usual court of appeals—that of
experiments and data—cannot be in session to deliberate on them.
And we grow impatient, and rightfully so, when those outside (and
inside) our discipline tell us the proper answers and even the proper
questions to consider. Nonetheless, some questions of a metaphysical
nature show more promise from an approach rooted in empirical psy-
chology. I suggest that one is the last question posed at the beginning
of this chapter: What is the nature of information such that it informs
us? This question is at the intersection of psychology, philosophy, and
artificial intelligence. An answer to it is, I contend, a necessary beginning
to any account of perception.

Three Approaches to Information

In general, three classes of visual information have been discussed:
From philosophy came sense data, from engineering came information
theory, and from psychology has come an application of geometric
gptics. I have already tipped my hand strongly in favor of the last, but
it is instructive to consider each in turn.

Information in Sense Data

Philosophers often use the concept of sense data, sometimes called
sensa or sensibilia. Sense data are the unanalyzed sensations from
sense organs as sent to the central nervous system; they are a rather
curious outgrowth of the early analytic philosophy of this century.
Sense data became the tool for discussing how perception might be
possible and fallible at the same time. The initial utility of the notion
was based on the need to consider foundations of knowledge. It was
argued, for example, that we cannot know with complete assurance
what we perceive without first knowing the conditions under which
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we perceive it. This reduces to the idea that we can be assured of
perception if and only if we can be assured of what we perceive, a
style of argument that convinces few.

Early discussions began with sense contents, a notion introduced by -
Moore (1905-1906). It was transformed into sense data,” then adopted
by Russell (1914) and Price (1932). Thereafter it became popular as an
attempt to provide a metaphysically neutral term for describing what
is presented to the mind of the perceiver. Sense data are caused by
but are not identical with physical objects. They are private and sub-
jective, bound to the receptive capabilities of the perceiver. Thus a red
traffic light causes different sense data for drivers of adjacent
automobiles.

An interesting progression took place in the development of the
sense data concept. Objective fact began to play a part in sense data
talk. Sense data are different for different people, in part because no
two individuals can occupy the same viewpoint. For vision, then, sense
data began to take on the meaning of optic projections of a physical
object and its surround. Thus sense data became both information and
sensation, public and private. From my perspective the sensory, or
private, nature of sense data serves no purposes here; in fact, with
Dretske (1981), I suggest that information must be objective and public,
without private parts. Making information partly subjective impedes
progress, giving it a nebulous status between the mental and the
physical.

Ignoring this issue, philosophers had their attention elsewhere when
developing the sense data concept; they were addressing the foundations
problem in epistemology. It was argued that observers could be assured
of their sense data because it is not in the nature of sense data to be
correct or incorrect; sense data simply are what they are—phenomenal
impression. On the other hand, it was thought that observers could
not be assured of their perceptions. This led to a situation that begins
to sound familiar to psychologists: It was said that observers can directly
perceive the sense data, because those data are firm, but indirectly
perceive the objects to which sense data are referred. Instead of con-
sidering the direct/indirect debate here, I defer it until the last two
chapters. Here I wish only to state the reason behind sense data talk—
the justification of belief. It has often been said that perceivers can
never be assured that they are not being deceived by some omniscient,
slightly mad being. The mere possibility of illusion, hallucination, or
electrophysiological intervention causing percepts identical with those
that occur normally makes the sureness of perception unjustified, or
so the philosopher thinks. Now it is clear to me that such circumstances
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are offbeat if not implausible. But the philosopher is ever-worried about
counterexamples to normality, no matter how unlikely.

In summary, two ideas are important about sense data: Information
for perception is unsure, and the conditions for perception cannot be
known a priori to be normal. My counterclaim is, first, that information
is trustworthy under normal conditions. That is, even if at the current
time the sense data are ambiguous and nonspecific as to what should
be perceived, later instants will disambiguate those states, typically—
as suggested by my title—through motion of the object or movement
of the observer.® Second, justified true belief in the normality of per-
ceptual conditions can also be litigated over time. If an observer explores
an environment by moving through it, viewing conditions will become
apparent. The probability of abnormal conditions giving rise to normal
perceptions when an unfettered perceiver roams through a cluttered
space is so small as to be nonexistent, even for the philosopher who
traffics in surety.®

Information in Sets and Set Size

From engineering came information measured logarithmically by the
number of members in a set to which an object belongs. Typically, the
base of the scale is 2, and the unit is the bit. A choice between two
equiprobable items, then, is one-bit choice; that among four items, a
two-bit choice; and that among eight items, a three-bit choice. The
seminal work behind this idea is The Mathematical Theory of Communi-
cation, by Shannon and Weaver (1949), a book about the electrical
transmission of signals and not at all about perception. Information
theory was popularized within psychology by many people, but most
successfully by Miller (1956; Miller and Frick 1949) in research on
language perception, an area reasonably close to its origins. Shortly
thereafter it spread to perception, where it thrived.! It is not so popular
now as it once was in experimental psychology, and in several ways
this is the field of perception’s loss. The ideas that it addressed, albeit
inadequately, are important for understanding perception,

The information-theoretic approach has much quantitative precision
and elegance. For example, if 1 tell someone that today is in the month
of January, 1 have given him or her more information, excluding 11 of
12 possibilities (and therefore log,(12), or 3.585 bits), than if I say today
is Thursday, thereby excluding 6 of 7 possibilities (log,(7), or 2.807
bits). Such analyses were applied to almost any action or percept (see
Quastler 1955), and ensuing calculations gave the appeararnce of deep
understanding. To be sure, there was always something odd about the
idea that the information about an entity is contained in a measure of
the number of things in its class or set. It would seem, instead, that
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information would somehow be in what a thing /s. But the information-
theoretic approach has other problems. Consider the following seven.

One problem is a classic puzzle for perception—-ambiguity. An entity
may appear to be one thing but not the same thing at all times. Multi-
stable visual illusions are salient cases in point. From an information-
theoretic point of view, two things can be said: (1) At any given time
an ambiguous figure is singular, and (2) even though there may be a
class of objects implied by a stimulus array, that class still excludes a
large number of others. In this manner, the approach sidesteps the
question of why there was ambiguity in the first place, although the
approach remains self-consistent and adequate for other goals. But
whereas there can be great power in an approach that systematically
ignores a side issue,'! ambiguity has not traditionally been regarded a
side issue to perception. : :

A second problem is that information-theoretic analysis initially ig-
nored the state of the organism. Consider again the example given
above; at any given time it seems likely that more people know the
month than the day of the week. Thus by definition the statement
about month is more informative, but in terms of what an individual
might not already know, the day is probably more so. Surely new
knowledge is more informative than old knowledge. The most important
response to this problem was Garner’s (1962), who spoke of information
based on a priori uncertainty. From his perspective, if someone already
knows that it is the first month of the year, being told that it is January
offers no information; it reduces no uncertainty. Garner thus distin-
guished the received amount of information from the value of the
received amount. In.the month case, the value is zero because of the
state of the individual, But, a priori, how do we know this state?

A third problem is truth, or verifiability. We would think that in-
formation should reveal the true status of affairs, but no such claim
has been made. Consider again the day and month case. Suppose that
in fact it is January but not a Thursday or Thursday but not January,
or suppose that it is even a Monday in May. These facts do not change
the information measured. But it seems wrong for incorrect and correct
information to have the same status or for incorrect information to be
considered information at all. This issue, and the explanations that
ensue, drag us sideways into philosophical issues of justification. We
are then torn away from our goal of explaining how information informs.

The next four problems are even more difficult and deal with the
nature of categories and conceptual sets. The fourth problem is that,
whereas all members of a set-are counted equally by the theory, natural
sets are rarely homogeneous. As Rosch (1973, 1975) amply showed,
some members are more representative than others. Robins, for example,
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are rightly considered by North Americans to be more birdlike than
ostriches, and thus we should think that they would count more in
bitwise assessment. The prototypicality of robins over ostriches suggests
that natural sets can be fuzzy. Because of fuzziness, it is not clear how
to allot membership: Should we count all members equally or weight
them according to their typicality in a class? These are questions to
which there may be answers, and much intellectual effort has been
focused on them,'” but to me they do not offer solid ways to measure
information for everyday perception.

A fifth problem is that the objects or events around us rarely imply
single sets to which they belong, and a sixth problem is that they do
not imply the size of those sets. Consider a pencil. Does a pencil imply
all writing implements, all things that fit into a briefcase, all artifacts,
or something else? And how many types of writing instruments, brief-
caseable items, and artifacts are there? Is a charred piece of wood a
writing implement to be counted in the first set? It depends, of course,
on the intentions of the individual. Is a computer an item that fits in
a briefcase and therefore a member of the second set? It depends on
the sizes of the computer and of the briefcase. Is a dinner an artifact
and of the third set? It depends on construal of the term “artifact”; a
dinner is human prepared but rarely completely synthetic.

But perhaps the most difficult problem with sets is the seventh—
relativism. Items belong to different sets at the convenience of the
individual. A pen can be a writing implement at one point in time, a
sharp object for cleaning shoes at another, and a bookmark at yet a
third.”® Because all aspects of all contexts cannot be known for every
potential situation, it is not clear what sets should be involved in any
given information calculation.

Problems of heterogeneity within sets, multiple membership across
sets, unspecifiability of set size, and relativism confound the application
of information theory to perception. Moreover, it is not clear that their
resolutions can bring us closer to an understanding of how information
is used. Answers can tell us only about the proper ways to represent
information once objects are perceived. Ultimately, the problem with
the information-theoretic approach to perception is that objects that
belong universally to single sets of fixed size and composition are not
the stuff of which our world is made.**

Information in Geometric Structure

A third measure of information concerns relations among objects and
object parts. Unfortunately the nature of real-world relations, like that
of real-world sets, is manifold and multidefined. Which are we to con-
sidex? To begin with, there are structural and functional ways to relate
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objects. My bias is toward the structural, but discussions of both are
fraught with difficulties.

Relations entail formats, and many psychologists have been concerned
about the format in which the relations are expressed in mental activity. -
Putatively, this is an issue about the architecture of the mind." But
whatever the merit of the debate over format, its resolution is not crucial
to my discussion. I use both popular formats to discuss the information
important to the observer: On the one hand, I need equations that
specify the layout of objects in the visual world and hence use a prop-
ositional format that is easy to implement in a computer program; and
on the other hand, I need two-dimensional analog figures that represent
the relations of geometric optics in order to explicate these equations
for the reader.

The basis of information about spatial relations that I consider is
quite concrete—angles. I start with angles because of the nature of light.
As Euclid stated, and as will be considered at some length in chapter
2, the line of sight from the eye to an object is straight.'® Between lines
of sight are angles, and within angles we can find much information
about the geometry of surfaces. Geometrized information escapes some
problems of the other two forms. First, unlike sense data, spatial in-
formation does not change or require change with the state of the
organism. In fact, no organism need be present at all for the situations
I discuss. Second, truth enters into discussion only as mathematical
truth—proof of theorems and geometric relations. There is no need to
delve into problems of justification and belief because they do not arise.
The mathematics that I use is sufficiently closed that proof and truth
are unproblematic.’” What needs proof, or at least corroboration, is that
perceivers use this type of information. And third, by definition, there
is no problem of size, composition, overlap, or context of sets. Plainly
put, based on angles the form of information central to this discussion
is mathematical relations about distance.

To many, it will seem outrageous to consider angles as a basis for
information about distance. They will suggest that, if I thought the
problems of sense data and information-theoretic analyses were nu-
merous, then the problem I have set myself is enormous; it flies in the
face of nearly three hundred years of philosophical tradition.’® But [
am not claiming that distance information is registered at the eye without
transformation, Instead, I claim that relative distance can be recovered
from information in the optic array and that the recovery process is
inextricably tied to movement of the observer or motion of objects.

There has, of course, been much debate within psychology and phi-
losophy over the nature of these transformations. Some appear in later
chapters. One major conceptual tool that allows for recovery is invari-
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ance, the topic of chapter 5. The invariance that concerns this work is
information about a rigid object’s shape or about rigid relations among
objects that does not change with point of view, lighting, or other
transformations. Such information provides the firm foundation for
perception that philosophy has shown we desperately need.'® One
might find invariance in many ways. Here I will be eclectic, discussing
information in three forms, taking the lead from machine vision.

Three Approaches to Structure through Motion

What sources of visual information are available to a perceiver when
making judgments about a moving object? Ullman (1981, 1983) char-
acterized three approaches for unrestricted motion.?® All three attempt
to derive unambiguous three-dimensional solutions from two-dimen-
sional projections, either over time or as seen from different viewpoints.
Increasingly in both machine vision and psychology, mathematical
proof of geometric relations and demonstration that human perceivers
use them govern what constitutes solutions to problems. The research
presented here is in this tradition.

Discrete Points and Views. The first approach considers relations
among discrete elements from different views, Ullman (1979) based
his structure-from-motion theorem on it and proved that four points
in three-dimensional space seen in three different parallel projections
suffice to determine rigid spatial arrangement. He also suggested that
five points seen in two different polar projections may suffice. 1 discuss
these projection techniques in chapter 2. This approach is most closely
connected with the set of studies presented in chapters 7 and 8. My
goal there is to determine if the observer can recover a certain aspect
of object structure, namely coplanarity of a surface, from relations among
parallel lines over time. Although I consider a continuous view rather
than discrete ones, my emphasis is still on spatial structure, rather than
spatiotemporal structure. Because 1 limit myself to planar stimuli, my
approach (when mapped back onto Ullman’s) is that of considering
four points in a minimum of two discrete perspective views. When
considering other measures, three points may suffice and may do so
in as few as two views.”

Discrete Points and Displacements. A second approach has been quite
popular in machine vision.” Instantaneous displacements of points in
space are indicated on a proximal image as vectors, or arrows that point
in a particular direction for a particular distance. These are then used
to determine the arrangement of objects under the assumption
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that the layout is rigid. Prazdny (1981a), for example, suggested that
five points and their displacements in a single perspective view are
sufficient to reconstruct a three-dimensional array. This second approach
is closely related to my analyses in chapter 9. There, discrete points -
(or parallel lines) are considered, each with a particular displacement .
vector at every instant in time. Again, the stimuli are presented con-
tinuously. Results suggest that four parallel lines and their displacements
are sufficient to register a planar surface. Three may do as well.
Displacement Fields. The third approach is probably the most com-
mon. Many researchers have used many different formalisms about
displacement fields to describe linear and curvilinear translations
through rigid space.” One of their goals is to describe global flow
generated by observer movement. In chapters 11 through 13 1 use a
hybrid of this approach and the second. That is, rather than starting
with discrete points and displacements for an observer moving over a
plane, 1 consider the displacement field and from it generalize to fields
of discrete points as projected to the eye. This pattern of motion is
commonly called motion parallax, sometimes motion perspective.

Overview

Questions of perception are intimately tied to metaphysics. This tie is
both welcome and ensnarling. 1t is welcome because it demonstrates
the profundity of the questions. It is ensnarling because our tools for
finding out—experiments and their data—help us little in providing
metaphysically appropriate answers. But setting these questions a51de
we can address issues of how information informs,

In the study of visual perception, we could begin with sense data.
These are thought untrustworthy as representing objects in the envi-
ronment and thus ill-provide a foundation. To shore up the system,
conceptual elaborations are needed to take us out of the perception
and into cognition. We could also begin with information-theoretic
analyses, but these proceed most easily only when the sets are of
known size, homogeneous in composition, nonoverlapping, and un-
varying across contexts. Most interesting sets in the perceptual world
are none of these. On the other hand, we could consider—as I do—a
third kind of information, the geometrical structure of spatially dis-
tributed objects and object parts as they are projected to the eye. The
epistemological position that 1 am proposing is little different from that
of Roger Bacon, quoted at the beginning of this section: Geometry is
the foundation of vision. Going beyond Bacon, invariance is to be found
in geometrized information, and the pursuit of trustworthiness in per-
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f:eption may prove fruitful through it. This information can be couched
;n .mtany ;vays, anc;:l following an eclectic path, I use several—discrete
oints and views, discrete poin ir i i
o Gisplacemont f points and their instantaneous displacements,
Before approaching that end, however, many intermediate steps must
be taken. Because optic information has been much maligned, in chap-
ter 2 I consider the nature of projections and the optic array. In ’chapterPB
1 ‘emalyz_e pictures as projections of three-dimensional environments; I
discuss in chapter 4 the intellectual history of objects in space suéh
thatl they might be projectable, and I address invariance as a mathe-
Fnahcal and psychological tool that might serve to discuss projections
in c.hapter 5. By then we will have the tools to explore particular in-
variants in particular perceptual situations.

2
Projections, Optics, and the Optic Array

My goal is to offer concrete reasons why visual perception can be
trusted. My claim is that the trustworthiness of perception is built on
the trustworthiness of information. Time and motion turn the trick,
fortifying the information on which the perception is based. And if
information is the key to understanding perception, then projections
are the key to understanding visual information. Projections, in turn,
are based on optics. In later chapters I consider changing optic pro-
jections as proximal stimuli, whether at the eye or on a film screen,
that contain information about the distal layout, the arrangements of
objects in the real world. Before that, however, I must discuss the static
optic array. But because its geometry is somewhat tricky, I start with
static planar projections, tracing their discovery and use. This analysis
touches on pictorial art, mapmaking, and graphic design in an effort
to gain appreciation for the plurality of projection techniques more or
less similar to what the visual world presents to the eye.

Projections in Art and in the Eye

Projections are the core of visual art. The impact of architecture, sculp-
ture, painting, and photography depends on what is seen. Arrangements
of surfaces—constructed, carved, painted, or filmed—are projected to
the eye, and to understand them, we must address their arrangement.
Consider some comparative optics.

Eyes and Cameras

It was once fashionable to compare eyes with cameras. The analogy
is particularly apt for the vertebrate eye (Helmholtz 1868, Wald 1950):
Both the camera and the eye have dioptric lenses focusing bundles of
light rays to a point, both have pupils primarily to adjust focal depth
but also to modulate light, and both rely on laws of projection onto
surfaces. The eye-camera analogy is old, developed well before modern
cameras, and is due to Leonardo da Vinci (Richter 1883). Experiments
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followed shortly thereafter by Aranzi in 1595 and Scheiner in 1619 on
the optics of enucleated ox eyes (Pirenne 1970, Polyak 1957). Kepler
and Descartes popularized these studies and specifically discussed their
optics in terms of cameras, or chambers that admitted light through a
small opening. Much later, with the work of Niepce and Daguerre in
the nineteenth century, those principles were applied to photography.

More recently, however, the eye-camera analogy has fallen out of
favor." Important distinctions have been emphasized. For example, the
eye has neither shutters nor exposure time, yet the visual system allows
us to see a moving object clearly, whereas a still camera would register
blur. In addition, the shape of the projection surfaces are different.
Despite flaws in the analogy, however, the intended domain of the
comparison remains—the facts of lenses, pupils, and projections are
still valid. These must be considered in order to understand the law-
fulness of structural information in the visual world.

Medieval artists and almost all who went before used many devices
to represent spatial relations among objects. For example, the height
in the picture plane, the relative distance of the base of a depicted
object from the bottom of the picture, was commonly used to represent
distance. But such devices, although effective, were relatively crude.
With the development of Renaissance art arose a new tool of depiction
for naturalistic representation—linear perspective.? Early hints can be
seen in the paintings of Duccio and Giotto in the fourteenth century.
Much of the action, however, took place in fifteenth-century Florence.
There, Brunelleschi made the first perspective sketches in 1425 with
the aid of a mirror, Massachio and Donatello took his ideas and .applied
them to painting and sculpture, and Alberti codified and extended them
in his rules of composition, Della Pittura. Published in 1436, it is the
oldest extant document on linear perspective. In it, a half century before
Leonardo, Alberti encouraged the artist to imagine the picture plane
as something “transparent and like glass” to be drawn on (Edgerton
1975, pp. 87-90; White 1957), as shown in figure 2.1.> The study of
linear perspective then burgeoned, unifying medieval optics, mathe-
matics, and the technology of depicting.

From medieval optics came another important tool that advanced
Renaissance art. It was a different kind of camera, the camera obscura,
or dark chamber. Its principles were first sketched by Alhazen at the
end of the tenth century (Lindberg 1967, Polyak 1957), and it was
adopted by Alberti and others as an instructional device for young
artists. This camera is a light-tight box with a pinhole at one end and
an opaque or translucent flat surface behind it on which the image of
the world projected. The projection, like any focused image, is upside
down and reversed, a condition Leonardo tried to correct with double
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Figure 2.1 . )
A schematic diagram of prejection onto a planar surface, known as Alberti’s window.

lenses. Later, in 1604, Kepler reported-that this inversion took place
on the retina, a fact that led to centuries of quandary.! What is important
here, however, is not the quandary but the fact that artists discovered
and worked with projections. The pinhole camera obscura was the first
tool, earlier even than Brunelleschi’s mirror and Alberti’s window, for
drawing and measuring images, ,

Because light travels in straight lines, the only rays that can pass
through a small aperture the size of a pinprick are those traveling
straight from some part of an object through the pinhole and onto the
projection surface. The optimum pinhole is about 0.4 mm in diameter
(Pirenne 1970); smaller apertures are subject to proportionately too
much diffraction (bending of light waves around edges) to register an
image of reasonable quality, and larger holes allow multiple sources
of light to reach each location on the projection surface. The pinhole
creates a one-to-one mapping between what is present in the visual
world, unoccluded by other objects, and what is on the projection
surface.® That surface can be a plane, a curved surface of a sphere, or
surfaces of any shape whatsoever; photographs are examples of planes,
what bathes the cornea at the front of the eye or the retina at the back
of it are examples of curved surfaces, and certain works of photographic
art are examples of the third type of surface—discontinuous-and object
shaped.® The first two are shown in figure 2.2. For any point on one
surface, one can find an equivalent point on the other such that the
points that surround have the same ordinal arrangements. Betweenness
is everywhere satisfied. . .

But the projection surfaces are different in important ways. The pho-
tograph, the canvas, and the sketch pad are flat; the retina conforms
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Figure 2.2

Projections of columns in front of and behind a pinhole aperture onto flat and curved
surfaces, elaborated from Leonardo da Vinci (Richter 1883). Notice that even though the
exterior pillars (A and C) are farther from the pinhole than the middle pillar (B}, flat
_projections of them are larger. Curved projections yield what Leonardo called natur-al
perspective. All points on the human retina are not equidistant from the nodal point in
the cornea-lens system as shown here,

nearly to a section of a sphere. Plane geometry is appropriate to the
former, spherical geometry to the latter. The differences were first out-
lined by Leonardo (Richter 1883), who was troubled by the difference
between natural perspective (that seen with our eyes) and artificial
perspective (that used to construct a painting). In general, pictorial
distortions are introduced when any region of the plane is not orthogonal
to the line of sight between object and image. Spherical objects, for
example, project as ellipses, not circles, when the camera lens is not
focused directly on them; and in a line of pillars parallel to the plane,
those on the periphery project wider images than those directly in front
of the lens. Neither of these effects occurs with a spherical projection
surface, but the discovery of such planar distortions led to their playful
use.

Anamorphosis

Certainly the most extreme and striking projections are those of ana-
morphic art. Begun by Leonardo and Diirer and fully developed by
the seventeenth century, these minor artwor_ks are the camera obscura
obscured or gone haywire.” They are representational but composed
so that they can be discerned only when viewed from extreme positions
or with the aid of a cylindrical mirror. They are important to perception
because they demonstrate that a projection surface need not be or-
thogonal to the line of sight and that the relation between distal object
and proximal image is not fixed except by convention.
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Rather than pursuing projections in art and photography, however,
consider next the development of projection systems in an area of
applied mathematics—mapmaking. Here a special kind of anamorphosis
was embraced; it is informative because it projects from a sphere (the
earth) onto a plane (a map). The mapping of elements in the optic
array onto a picture is exactly of this form. 1 end this section, then,
with an analysis of planar projections.

Projections, Navigation, and Graphics

Projections from globe to map are at least as old as Ptolemy’s Geographia,
but systematic interest in them was not rekindled until the sixteenth
century.® Then came the pursuit and subsequent discovery of new tools
for representation. The practical matter was to introduce as little dis-
tortion as possible in areas of the world deemed important (typically
Europe), while transforming a continuous two-dimensional surface (the
globe} into a discontinuous one (a map) that could be folded up and
stored easily. Early solutions projected a sphere onto a cylinder. The
most famous is the stereographic projection of Gerhardus Mercator, -
published in 1554 and shown in figure 2.3. There, points along any
longitude (north-south meridian) are mapped as straight lines on the
cylinder by means of a common pole. Hence I call it a polar projection.”
The location of this pole is on the equator. A vertical fan of rays is
passed from it through the opposing longitude and beyond until it
strikes the surface of the cylinder. To create the map, the pole is moved
continuously along the equator, wrapping around the globe covering
all longitudes. Once all projections are completed, they form a cylinder
to be slit and unrolled into a flat, two-dimensional surface.

Two kinds of distortion are evident in the Mercator projection, First,
the map expands the latitudinal (east-west) distances away from the
equator. The cause of this distortion is that longitudes project as parallel
lines. At the extremes, the North and South Poles become lines stretched
across the top and bottom of the map. Because of these distortions and
because of the uninhabitability of these regions, latitudes above B0°
are usually omitted. Second, the projected north-south distances be-
tween latitudes become increasingly greater near the poles. Thus, on
the map but not on the globe, the distance between the seventieth and
eightieth parallels is considerably larger than that between the equator
and the tenth parallel. Together, these effects create the misimpression
that Greenland is larger than South America. In fact, it is less than
one-eighth the size.

Another cylindrical projection is orthographic, so called because pro-
jectors (lines used to constrtict the projection, emanating from the de-
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Mercator and Lambert projections of the world and an indication of how they are generated.
For my purposes the Mercator is a type of polar projection and the Lambert a parallel
projection.

picted object and intersecting the image) are orthogoqal (atright angle.s)
to the projection surface. This map is parallel projection, also shown in
figure 2.3. It was first drawn by Lambert in 172.2 but was never as
popular in cartography as the Mercator.'® Despite its relative obscurity,
its consideration here is instructive. The Lambert projection takes every
point on the globe and maps it to the nearest point on the cylinder.
For all longitudes, projectors between sphere and cylinder are parallel.
This map has the same latitudinal distortions near the poles as does
the Mercator but has the opposite distortions in longitude. The.ry are
compressed rather than stretched, yielding a Greenland that retains its
relative area but at the cost of being severely misshapen.

Two features are important about these projections. First, as sh.0}11d
be obvious, they have been extremely useful to navigators and Pohtlcal
geographers. They represent the topography of the globe quite well.
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Figure 2.4

Parallel projections of cubes, in which hidden edges are shown as broken lines. The
axonometric projections are, from left to right, isometric, dimetric, and trimetric. The
three oblique projections of a cube are the cavalier on the left and the cabinet on the
right, which essentially is a Necker cube. Foreshortening ratios {projected length divided
by real length) are given for each side.

But second, because all such projections introduce distortions, there is
no possibility of a flat, distortionless map. 1t is the nature of the projection
process, when transforming spherical to planar dimensions, that such,
vagaries occur.’! Polar and parallel projections, however, are only the
first division of a hierarchy of planar maps, used in both art and science.*
In general, parallel projections attempt to reproduce metric (absolute)
distances in an object but do so at the cost of appearing somewhat
strange and distorted. Polar projection, on the other hand, presents a
situation more like that found in everyday vision. The rays of light
project, not in parallel, but as a solid pyramid.” Oddly enough, as line
drawings, these too can look distorted.

Parallel Projections ‘

Parallel projections parse into orthographic and obligue. Orthographic
projectors intersect the plane at right angles. Their projections include
the multiview, or top-front-side, renderings so often used in mechanical
drawing. These have the advantage of showing no distortions on a
planar surface but have the obvious disadvantage of being unable to
portray a three-dimensional object in depth in a single view.

Other orthographic projections are axonometric, as shown in figure
2,4, Here, the various axes of the object must intersect the projection
plane at any angle so long as it is not 90°. The angles determine
foreshortening ratios, the values of which are the projected length of a
given set of lines divided by their true length. Comparison of ratios
further divides axonometrics. In an isometric projection all axes intersect
the picture plane at 45°. The wire-frame cube, first shown by Kopfer-
mann (Koffka 1935) and investigated by Hochberg and McAlister (1953),



22 Information for Vision

is of this kind. Interestingly, it is a graphical object that does not appear
depthlike. All foreshortening ratios are 0.707, the cosine of 45°. In a
dimetric projection two axes intersect the picture plane at the same
angle and hence have the same foreshortening ratio, but the third axis
intersects at a different angle; in a trimetric projection none of the axes
intersects the plane at the same angle.

The other type of parallel projection is the oblique, also shown in
figure 2.4. Oblique projections have one face of the object parallel to
the picture plane and projectors intersecting the plane at oblique angles.
Such projections provide a metric representation of one face of an object
but not of the other faces. Oblique projections come in many kinds,
but the most common are the cavalier and the cabinet. Cavalier projectors
intersect the image at 45°, and the cabinet’s at 64°. The cavalier pro-
jectors project the sides of an object at full value, with no foreshortening.
Because these look odd, overemphasizing the depth of an object, cabinet
projectors are often preferred. Their depth dimension (or z axis) has a
foreshortening ratio of 0.50, the cotangent of 64°. Unfortunately, these
projections often look too thin. Notice that the Necker cube is a wire-
frame object in cabinet projection.

Polar Projections

Polar projections divide into one-, two-, and three-point perspectives.
These correspond to the number of poles at which distal parallel lines
converge in the image, a feature never found in parallel projections.
As a result of these poles, two other distinctions emerge: diminution
of projected size with distance from the projected plane and nonuniform
foreshortening along various axes of objects. Both are caused by pro-
jectors intersecting the image plane at nonuniform angles. Typically
there is one projector, the centric ray, at or near the middle of the
image that intersects the plane at a right angle. All others intersect it
at increasingly acute angles around that ray.

One-point perspective is the technique developed by Brunelleschi.
Although fourteenth-century painters flirted with views from orien-
tations other than the front (and parallel to the image plane), fifteenth-
century artists almost exclusively presented faces of buildings and other
objects in this orientation (Edgerton 1975). Two-poini perspective-allows
an object to be viewed at any position in which no face is parallel to
the image plane, and three-point perspective has parallel lines converge
along three axes. Three-point perspective often comes as close to “nat-
ural perspective” as can be obtained on a planar surface.” Examples
are shown in figure 2.5.

If information for visual perception is to be found in the study of
projections, it should now be clear that the study is a complex one.
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Figure 2.5
Three polar projections of a cube in (a) one-point perspective, (b) two-point perspective,
and (c) three-point perspective. The cube in (a} also demonstrates Albertian perspective.
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Figure 2.6
A spherical projection surface for measurement of visual angles in the optic array. I call
this Leonardo’s window.

The problem is the plethora of projections, each distorting an object
in a different way. Fortunately, planar projections do not apply to
everyday vision. The optic array is a spherical projection, and thus we
need to consider its properties before comparing the perception of pic-
tures, cinemas, and experimental stimuli with the perception of three-
dimensional objects laid out in space,

The Optic Array and Its Measure

The central concept in vision is the optic array, the projection of the
world presented to a single eye.” The optic array is a “flowing sea of
energy, in which the organism is immersed, whose variations of order
are mathematically analyzable” (Gibson 1959, p. 466). More concretely,
it is the spherically projected, geometric pattern of ambient light around
a station point, or point of observation. It necessitates a projection
window of different shape than Alberti’s. I call it Leonardo’s window,
after his analyses of natural perspective. As shown in figure 2.6, this
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projection surface is spherical rather than planar because no plane can
intercept at right angles all projectors from all directions. The projection
is also polar rather than parallel because projectors must converge;
otherwise, only things the size of the eye’s pupil could ever be seen
at a given time. Finally, the optic array at a projection point need not
have an eye placed there; it is completely objective and can be recorded
with a camera, obscura or otherwise.

When an eye is placed at the projection point, the image on its
receptors, called the retinal image, strongly corresponds to the optic
array—rotated through 180° but otherwise nearly identical. Never-
theless, there are three important differences. First, the retinal image
is incompletely spherical; movable eyes must be anchored in their
sockets so that they can rotate. Those sockets, and the skulls from
which they are composed, necessarily obliterate much of the array.
Second, the retinal image suffers degradation because of imperfections
in the cornea-lens system.'® Third, and most important, there is motion
on the retina with any eye movement. The retina moves under the
optic array, causing global transformations in retinal coordinates but
few changes in the optic array.” -

Some Assumptions

To determine information about objects in the optic array, a researcher
must make measurements that, in turn, are based on assumptions.
These assumptions were made explicit by Todd (1984) and apply to
my analysis as strongly as anywhere. First, light is reflected from all
surfaces in all directions; there are no holes in the optic array from any
vantage point. Second, the structure of the optic array can be described
mathematically by solid angles intersecting a projection surface, which
can also serve as information for the perceiver. Third, within any cross
section of the optic array there are distinguishable units, called optic
elements, between which angles are measured.'® And fourth, the en-
vironment surrounding the point of observation is subject to physical
constraints. The particular one of interest here is rigidity, a property
of most objects and the ground. With these assumptions acknowledged,
consider next the units of measurement.

Some Units

Useful units of the optic array are visual angles, arcs traced out on an
imaginary spherical surface (or the not-so-imaginary retina). Throughout
my discussions I measure these arcs in degrees. They could also be
measured in radians, where those angles are divided by 360°/2w
(57.299), the curved length of the radius laid out on the circumference
of the circle. But radians lack the common appeal of degrees, so I stick
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with the latter. Areas of projected surface—variously called the cross
sections of bundles of rays, pencils of arc, cones of light, or visual
pyramids—can be measured in solid visual angles. Such measures,
however, are tricky. They take place not in the accustomed planar |
geometry but in spherical geometry,'” measured in steradians, where
47 steradians equal a sphere. But because 1 do not need to measure
the area of these solid angles, only their projected heights and widths,
steradians are not needed.

The trigonometry of visual angles is as follows: If 7 is the total height
(or width) of an object whose central flank is at right angles to the line
of sight and d is the distance to the midpoint on the flank, the visual
angle o subtended by that object is

o = 2 arctan(h/24). ' 2.1)

For small objects, « is well approximated by arctan{h/d). (Here and
later, arctan is the function arctangent.)

Rules of Thumb and Fist

Because units of visual angle, as yet, may have little intuitive appeal,
consider a literal rule of thumb from Helmholtz (1868). 1f one’s thumb--
nail is, like mine, 1.4 cm across and if the distance from eye to thumbnail
with one’s arm fully extended is 56 cm, then the thumbnail subtends
2 arctan(1.4/112), or 1.4°.2° Thus the width of my thumb at arm’s
length, adding the fleshy surround, is about 2°.

A rule of fist can be added to the rule of thumb. If one’s fist, measured
from the base knuckle of the small finger to the base knuckle of the
index finger, is 7.8 cm wide, then it subtends about 8° of arc. When
extended to include the fleshy parts on either side of the knuckles,
excluding the thumb, the visual angle of the fist is about 10°. Of course,
arm lengths, hand widths, and thumb sizes vary, particularly across
males and females, adults and children. Nonetheless, because relevant
body proportions across people are nearly ratio scaled, these measures
generally apply to all. With rules of thumb and fist in hand, we can
set out to measure the visual world. This is precisely what Euclid set
out to do.

From Euclidean to Ecological Optics

Twenty-three centuries ago, Euclid wrote his Optics. It is the earliest
extant work on mathematical relations presented to the eye and is a
straightforward application of geometry, given in his Elements. Like
that work, Optics is replete with definitions, theorems, and proofs. This
fact is important for philosophical reasons because it demonstrates the
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tenure of the relation between what is presented to the eye (and hence
perceived) and physical space: Geometry is earth measure, and the eye
is its fundamental measuring instrument. Euclid’s juxtaposition of ge-
ometry and optics established perception as the basic route to knowing,
an idea I consider in more detail in chapter 4. But here let me review
what Euclid said, as translated by Burton (1945), the first English trans-
lation of Optics. (In what follows, parenthetical page numbers refer to
Burton’s translation.)

Euclid’s Axioms

Optics begins with axioms (or definitions). These set out assumptions
that we are familiar and comfortable with. The first and most important
is the rectilinearity, or straightness, of light rays,”* and the second is
that rays of light between object and eye form a cone.” The third axiom
concerns occlusion and interposition; objects that have rays connecting
them directly to the eye are seen, but others are not. These three axioms
have what Ronchi (1970) called “physicophysiological” content in that
they deal primarily with the physical, more natural-science aspects of
optics. The remainder have “physiopsychological” content and deal
with facts relevant to perception.

The later axioms define relations among visual angles and form bases
for discussion of layout. The fourth axiom is that, all other things being
equal, those objects seen within larger visual angles appear larger, those
within smaller appear smaller. The fifth axiom is that objects whose
visual angles are higher off the ground plane appear higher, those lower
appear lower; and the sixth axiom states that those things within visual
angles to the left or right appear left or right, respectively. These three
ideas set up the projective character of the optic array. The seventh
axiom states that those “things seen within several angles appear to
be more clear” (p. 357), where clarity is a correlate of the number of
rays that exist within (or more concretely, the size of) all visual angles
available.??

Euclid’s Theorems
Following the axioms, Euclid made sixty statements with proofs about
optic relations. Many appear quite modern, and they are eminently
sensible in all the possible meanings of that word. Some are less relevant
to optics than to the geometry of circles and other conic sections; others
are redundant or symmetric to one another, but many are central to
visual perception.

1. Thresholds. Euclid’s third statement explains threshold detection:
“Every object seen has a certain limit of distance, and when this is
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reached it is seen no longer” (p. 357). This is a straightforward appli-
cation of the idea that, although lines and angles are infinitely divisible,
the perception of size is not. Things phenomenally disappear when
their visual angles get too small. Euclid also explained that blurring,
an intermediate state between clarity and disappearance, is a natural -
phenomenon: “Rectangular objects, when seen from a distance, appear
round” {(p. 359). His proof was that the angles disappear before the
sides because they are relatively smaller.*

2. Constancies and the Convergence of Parallels, Interspersed among
ideas about limits to perception are statements about convergence of
parallel lines as they recede into the distance. Associated with these
are discussions of relative size: “‘Objects of equal size unequally distant’
appear unequal and the one lying nearer to the eye always appears
larger” (p. 358). There is a problem here and elsewhere as to what
Euclid meant by the term translated as “appearance.” It would seem
that he emphasized the measure of objects in the optic array, rather
than their perception. If this is true, theil the problem of size constancy
of objects is not directly addressed by Euclid. On the other hand, it is
difficult to believe that he was unaware of size constancy simply from-
looking at his diagrams. His third to last statement is that “objects
increased in size will appear to seem to approach the eye” (p. 372).

3. Distortions. Euclid also discussed compression distortions in polar
projection. For example, “If an arc of a circle is placed on the same
plane as the eye, the arc appears to be a straight line” (p. 361), which
is accompanied by a diagram showing all points on the arc equidistant
from the eye. He also stated, “The wheels of the chariots appear some-
times as circular, sometimes distorted” (p. 367). And in related obser-
vations, “of a sphere seen in whatever way by one eye, less than a
hemisphere is always seen’” and “when the eye approaches the sphere,
the part seen will be less, but will seem to be more” (p. 362). In this
latter statement, Euclid noted that the observer will see, on approach,
less and less of the spherical surface but that the visual angle subtended
will become larger and larger. ,

4. The Horizon and Motion Perspective. Most important to this work
are Buclid’s statements about information during locomotion. Several
deal with the height of the eye above (or below) the ground plane (pp.
359-360): S

In the case of flat surfaces lying below the level of the eye, the
more remote parts appear higher. . . . In the case of objects beiow
the level of the eye which rise one above another, as the eye
approaches the objects, the taller one appears to gain height, but
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as the eye recedes, the shorter one appears to gain. . . . In the case
of objects of unequal size above the eye which rise one above the
other, as the eye approaches the objects, the shorter one appears
to gain height, but, as the eye recedes, the taller one appears to
gain.

Eye height and the horizon play important roles in the experiments
and discussion in later chapters. Euclid also discussed motion parallax
and motion perspective (pp. 370-371). If an observer moves through
the environment and looks generally ahead,

objects move at equal speed, and have their ends on the same side
of a straight line which is at right angles to their course, as they
advance toward a line drawn through the point where the eye is
located, which is parallel to the straight line before mentioned, the
one farther away from the eye will seem to be ahead of the nearer

-one, but when they have passed (the direct line of vision), the one
that was in the lead will seem to follow, and the one that followed
will seem to be in the lead.

And, more simply with respect to looking to the side, “when objects
move at equal speed, those more remote seem to move more slowly.”
Finally, perhaps Euclid’s most blatantly psychological statement is about
induced motion: “If, when certain objects are moved, one is obviously
not moved, the object that is not moved will seem to move backward”
(p. 371).

Assessing Classical, Modern, and Ecological Optics

Euclid's work is a clear mix of what we now know as physics and
psychology. Classical optics changed with Alhazen, John Pecham, and
Roger Bacon. They replaced Euclid’s psychology with more and more
systematic statements about physiology. The trend continued, and now
students almost never find any psychology in modern textbooks on
optics. Although more knowledge is always welcome, the loss of concern
over the original issues has not pleased all students of optics.”” For
example, Ronchi (1958, p. 173) stated that:

Optics, properly understood, is not a part of physics, but the science
of vision. The process of vision contains three components: physical,
physiological, and psychological. The last of these is predominant,
because a universe full of rays, waves, and photons would be dark
and colorless in the absence of a living observer’s mind. Without
mind there may be rays, waves, or photons; but there can be no
light. Hence light is not a physical phenomenon, and the study
of it does not belong to physics, whereas the study of rays, waves,
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and photons does. This new way of viewing the subject of optics
is applied to images, both virtual and real. These are mathematical
or psychological entities, with nothing physical about them,

Thus there are three different approaches to optics: classical, of which -
Euclid is the best example; modern, typified by Hecht and Zajac (1974); -
and ecological, represented by Gibson. Classical optics is best sum-
marized as a series of statements in three domains of study: mathematics
(particularly geometry), the physical world (pyramids of light reflected
off surfaces), and perception (relative size, motion parallax, and so
forth). Modern optics, beginning with Alhazen, has also been primarily
concerned with three domains, but they are slightly different: math-
ematics, physics (and increasingly with minutia, such as photons), and
physiology (substituted for psychology).® Ecological optics reverts to
the concerns of classical optics, away from phatons and receptors toward
geometry, layout, and perception.

Boynton (1974) may have been first to realize the similarity between
classical and ecological optics and set as his task their comparison. He
alleged two shortcomings of these approaches stemming from phys-
iological optics. First, he suggested that the quality of the retinal image.
is always worse than predicted on the basis of geometry (see also Haber
1980), and that to ignore degradation of the image is to ignore inherent
information loss. Second, he suggested that geometrical and ecological
optics have nothing to say about intensity of light and that perception
is vastly influenced by that variable.

I can recast Gibson’s (1974) reply, which was weak, in the stronger
terms of Euclid. First, in the third theorem of Optics, Euclid stated that,
through threshold considerations and blurring of images, geometry and
perception would diverge at the limits of acuity. Physiological optics
explains this divergence in a rigorous way, but the elements of this
fact have always been a part of classical optics and, by extension, of
ecological optics as well. The retinal image is not a construct that is
necessary in a psychological sense simply because it is a degraded form
of the optic array. Second, although Euclid made no statement remotely
suggesting that illumination is important, he obviously assumed daylight
conditions, which are well above threshold for detection of light. Gibson
(1960a, 1961) also made this assumption, and it seems fully warranted
if we are concerned with how perception serves everyday activity. Thus
Boynton’s remarks were in the first case wide of the mark and in the
second not directly relevant to the task that ecological optics has set
for itself. Boynton’s position seems based on the commeon confusion
between information and energy and on a set-theoretic pun on the
word in: Information is in the light, light is measured in quanta, but
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it does not follow that information is i# quanta. Information is spread
out across patterns of quanta typically so far above threshold that their
individual registration does not constrain discussions of normal
perception.

“Ecological optics” is the term that Gibson (1961, 1979) gave to the
study of environmental information for vision. Unsatisfied with optics
proper, he borrowed the term ecological from Brunswik (1956), who in
turn had borrowed it from Lewin (1343). Put simply (Gibson 1966, pp.
221-222), ecological optics “purports to be a new basis for a science
of vision, put together from parts of physical optics, illumination en-
gineering, ecology, and perspective geometry.” There is no question
that Gibson went beyond Euclid, but I contend that it was in the same
direction and with the essentially same goal in mind: describing geo-
metric relations in the optic array. Photometric concerns—particularly
those of shading and illumination—were important additions by Gibson
and more recently by many researchers in artificial intelligence, but
their main contribution is to aid the understanding of the observer’s
environment.

Querview

Pictures are planar projections of a three-dimensional environment,
and these planar projections come in many kinds. Distortions perfuse
all, and Leonardo da Vinci decried the problems of linear perspective
in representing natural scenes. Polar projections onto a plane are most
like natural perspective when constrained in appropriate ways, but they
are still not like the optic array. The optic array is a spherical projection
and is the central concept in the analysis of visual information. It is
my task, and that of others, to measure projections of objects in the
optic array in search of information that perceivers might use.

Euclid's work demonstrates that classical optics was scaled to the
viewer, but as optics became sophisticated through the Middle Ages,
the Renaissance, and beyond, interest in perception dropped out. Eco-
logical optics is not so much a new field as a rekindling of interest in
an old one. Euclid was on the right track; extension of his views begins
to make a theory of perception tractable and builds our understanding
of the perception of objects laid out in space.

3

Pictures

The studies of projections and optics intersect in two areas: perception
of the environment and perception of representational pictures. Al-
though the former is the major fScus of this book, the latter raises
important issues. The psychology of picture perception is also a fertile
ground for assessing adequacy of general theories of perception, and
in this chapter I touch on these. The central reason for this digression,
however, is pragmatic. In the experiments described in later chapters,
images are presented to viewers on a computer-driven display. These
stimuli are pictures—flat cinematic images. Because I plan to make
theoretical statements about the perception of the real world on the
basis of perception of computer-generated moving images, I must con-
sider the relation between the two. Let me begin with an overview of
some theoretical views of picture perception.

Approaches to Picture Perception

Nearly all who have contributed to perceptual theory agree that pho-
tographs are special cases in which the optic array is truncated and
frozen in cross section. They disagree, however, when it comes to
projection surfaces, and it is here that the divergence of thoughts on
perspective begins. Some of the issues were forecast by Jacques Riviere,
who in 1912 (Fry 1966, p. 77) wrote:

Perspective is as accidental as lighting. It is the sign, not of a
particular moment in time, but of a particular position in space. It
indicates not the situation of objects, but the situation of the
spectator.

Is perspective really accidental? Does it not reveal the layout of objects?
And if not, how does it reveal the place of the observer?

Conventions
One school, generally composed of artists and art historians, suggests
that the devices used to represent depth in paintings are fabrications
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of culture. They are conventional representations. Panofsky presented
this view in 1926. Concerned with the difference in projection surfaces,
he noted that ““the eye actually projects not on a plane but on the inner
surface of a sphere” (Carrier 1980, p. 286). He reasoned further that,
because the projections of art are planar, they are a result of cultural
convenience and convention. Since Panofsky, many have shared this
view. Its force is captured by Goodman (1968, p. 33), who told a story
about Picasso and his depiction of Gertrude Stein. On hearing a com-
plaint that the portrait did not look like the subject, Picasso replied,
“No matter; it will.”? Goodman, however, was more careful than this
quote might first appear. His intent was to pursue Panofsky’s lead
concerning projection surfaces. Goodman suggested that we have be-
come acculturated to planar projection, where that plane is held ver-
tically. This convention creates the optic facts of converging railroad
tracks and parallel vertical poles. But Goodman (1968, p. 16) noted:

The rules of pictorial perspective no more follow from the laws
of optics than would rules calling for drawing the tracks parallel
and the poles converging.

Thus, when a low-flying aerial photographer takes pictures of a local
terrain, railroad tracks would remain parallel and telephone poles con-
verge, Convergence of certain parallels but not of others is as “acci-
dental” as Riviére suggested.

Despite these facts, I find the choice of the word coenvention unfor-
tunate. It can mean too many things, The roots of the word connote
a contract. Applied to the perception of paintings, the contract must
be between painter and perceiver, with emphasis placed on the relative
arbitrariness of the conventions, as if any artistic group could decide
on any tools of depiction, provided that percipients of art agreed to
their efficacy.” I suggest that constraints on such contracts seem far too
loose for picture perception to work as well as it does, and following
long tradition I suggest that the idea of conventions is incomplete at
best.* Devices for depiction are conventional only insofar as their bases
are not in optics, Put another way, the ultimate contractor is the evolution
of the human visual system. Linear perspective, even with a conven-
tionally held vertical plane, is intimately tied to optics.

Surrogates

Gibson (1954b) suggested that the success of representative pictures
lay in surtogates to the optic array that capture Riviére’s “accidents”
at a particular place and time. Surrogates come in two varieties, con-
ventional and nonconventional, the latter of which are the most critical
to realistic pictures. These are the sources of information in the picture
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that mimic those in the optic array. Gibson proposed that the similarity
relation between the representing (the surrogate) and the represented
(the optic array) be called fidelity.* Some artworks have greater fidelity
to the optic array than others, but none are identical to it. Pictures re-
present many, but never all, characteristics presented to a single eye.
For example, in photography and in film, in which fidelity is greatest, -
the range of reflectance values are orders of magnitude less than that
found around us during the day. In paintings the reflectance constraint
is even greater (Hochberg 1978a).

Helmholtz (1871) and Hochberg (1979) explained how some sur-
rogates work. One is in chigroscuro, a sixteenth-century technique that
uses subtle gradations of shading to enhance contrast. In particular,
regions of a painting or woodcut that should have the same reflectance :
are often given widely differing values to make adjacent and contrasting
areas appear darker or lighter. Chiaroscuro is not a tool for fidelity but
a method to enhance what cannot be captured in etching, ink, or paint.
Nevertheless, such shading is not conventional; it takes advantage of
a perceptual phenomenor, the Craik-O'Brien illusion (Cornsweet 1970),
in which smooth gradations of reflectance are seen as a uniform field.
Thus the artist can fool the eye of the observer over a section of canvas -
by gradually changing image intensity where no such change would
occur in the optic array. More generally, surrogates have theoretical
importance for perception when they take on a new name—cues. But
I find the term “‘cue,” like the term ““convention,” unfortunate, It has
implications that go against the theoretical perspective that I wish to
present. These implications concern the trustworthiness of optic in-
formation; 1 return to them at the end of this chapter.

Mental Constructions

How the perceiver deals with surrogates in pictures has caused much
controversy.’ One idea from Helmholtz (1871) is easily allied to the
sense data approach of philosophy. It is perhaps best represented in
art by Gombrich (1960) and has been called a constructivist approach.
Here, emphasis is placed on cognitive elaboration of pictorial surrogates
and the development of schemata for picture perception.® Those taking
this approach believe that we learn to perceive cues in the image for
the purpose of composing an internal representation of the depicted
scene. Stripped bare, this process must entail two types of associations;
First, cues (surrogates) are associated with (have some probabalistic
connection to) properties of the real world as they are reflected in the
optic array; second, those elements are associated (through habit strength
or the like) such that they compose a whole scene. I find the latter idea
curious, but it is not unique to picture perception. It can be found in
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many accounts, from Mill (1843) to Wallach (1976b) and Rock (1983).
The former idea, however, is the most intriguing. 1t suggests at least
two stages in perceptual learning. At first, those who have no experience
with pictures should be baffled by them, seeing them as two-dimensional
surfaces with odd marks; then with practice they should come to see
pictures as representing objects in a three-dimensional world. The de-
velopmental evidence in favor of this sequence is quite unconvincing.
In fact, if anything, the evidence supports the opposite view. | consider
that evidence in the next section, but from it Haber (1979, 1980) sug-
gested that children have little difficulty in treating pictures as revealing
objects in depth. On the contrary, they have early difficulty in treating
pictures as two-dimensional objects.

Theories of picture perception in broad sweep are not directly relevant
to the discussions of motion in the optic array. Central issues of caricature
and abstract (nonrepresentational) art are beyond my scope. One issue
of depiction, however, is central to representational images on computer-
driven displays.

La Gournerie’s Paradox

Perspective, from its roots, means “to look through.” 1t is only a small
step, then, to consider perspective as the view through Alberti’s window
into the real world. Linear perspective is the technique, developed by
Brunelleschi and codified by Alberti, for portrayal of objects receding
in depth to a vanishing point. It is a polar, planar projection meant to
be viewed such that the vanishing point is at the same height as the
eye (Edgerton 1975). Lines radiate from the pole at the horizon, forming
a pyramid of rays. The obvious question is: How does Brunelleschi’s
pole at the horizon relate to Euclid’s pole at the eye? In some sense,
they are at opposite ends of the visual world. The answer can be
conceived of in two ways, one as a demonstration with mirrors and
the other as an analysis in projective geometry.

In the mirror demonstration, conceived by Brunelleschi (Edgerton
1975), a drawing is made on a flat surface in one-point perspective,
and a hole is drilled through the vanishing point. Next the observer
holds the drawing and a mirror such that they are parallel, with the
drawing closer.” The observer looks through the hole from the back of
the drawing at the mirror and sees the reflected surface in it. What is
seen is exdctly the same, except mirror reversed, as if one were looking
at the drawing from the front at twice the distance between the mjrror
and image. The importance is that in this demonstration the eye and
vanishing point are in the same location, not a virtual world apart.
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Thus there is something similar about Euclid’s cone of light and Bru-
nelleschi’s convergence of rays,

The geometric explanation of Brunelleschi’s experiment concerns the
projective nature of parallel lines and the relation of the image plane
to lines of sight. When the painting is constructed to be viewed as an
orthogonal cross section of the optic array, the eye should be aligned
with the perpendicular to the picture surface at the location of the
vanishing point. Thus the #anishing point and the station point are
not really the same; they are simply opposite ends of the centric ray,
sometimes called the “prince of rays.” When the eye is not there, the
geometry of the depicted space is distorted.

Linear Perspective from the Wrong Station Point

The crux of Brunelleschi’s experiment is that the eye is fixed in one
position. The hole in the back of the picture constrains the viewpoint,
making lateral excursions impossible. Appropriate placement of the
parallel mirror at half an arm’s length ensures the correct perspective
if the image is originally constructed at arm’s length from the station
point, a convenient distance from which to paint.

When viewing most pictures, however, eye position is not fixed.
Indeed, gallery folk wander about and look at pictures from many
different locales. The paradox is that linear perspective is mathematically
correct for only one station point,® yet almost any position generally
in front of a picture will do for the layout in the picture to seem
relatively undisturbed. This phenomenon is fortunate, for without it
the utility of pictures would be vanishingly small. But it is unpredicted
by the theory of perspective drawing. This paradox was first discussed
by La Gournerie in 1859 (Pirenne 1970, 1975). In what follows I call
it La Gournerie's paradox; Kubovy (1986) calls it the robusiness of per-
spective. 1t is useful to discuss the paradox in two forms: The first
concerns viewing pictures along the centric ray but at a distance either
nearer or farther than the proper station point; the second and more
interesting concerns viewing pictures from the side.

To consider such distortions, we must reconstruct the geometry of
pictured (or virtual) space on the premise that the image is, like Alberti’s
window, invisible and that observers look through it to make sense of
the depicted world.* The possible transformations of viewing position
are along the z axis and along the x or y axis. The former creates a
collapse (or expansion) in depth; the latter causes shear or twisting of
the depth axis against the frontoparallel plane. Observer movements
that generate collapse are called normal displacements because they
occur along the surface normal, or perpendicular, to the picture plane;
those generating shear are parallel displacements, occurring parallel to
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a b c

Figure 3.1

Tl%e distortions of virtual space in a picture, (a) Four points in the environment projected
onto an image plane, a situation that mimics a photograph. (b) Compression transfor-
mations in pictured space caused by an observer moved closer to the image plane than
the proper station point. (¢} Affine shear of virtual space caused by lateral displacement
of the observer. The xz planes are thus affine transformed; the xy planes stacked in depth
are perspective transformed.

the image plane. Both are affine transformations. They preserve collin-
earities among points but do not preserve most distances or, most
particularly, many angles. All possible viewpoints of a pictured surface
are additive combinations of collapse and shear of the virtual space.

In figure 3.1a four points are projected onto the image plane as might
be seen in a large photograph. When the observer moves closer to the
image, undergoing normal displacement (as shown in figure 3.1b), the
projected points stay in the same physical locations on the image, but
the correct geometry in the virtual environment must change. Notice
that the distance between the front and back surfaces is relatively com-
pressed, a collapse of depth like that found when looking through a
telephoto lens. The effects of parailel displacements of the observer on
virtual space are shown in figure 3.1c. The same arrangement of image
points is shown, with the observer moving to the side. If the image
represents the virtual environment behind it, that space must change.
In particular, points shift over by differing amounts. Parallel lines remain
parallel but right angles change into acute and obtuse angles. This
result is related to the oft-noted effect in portraiture, where if the por-
trayed subject appears to look out at the observer when he or she is
in front of the painting, the subject also appears to follow the observer
around the room."

Pirenne’s (1970, p. 99) account of the perception of a picture viewed
from the side is in sympathy with Helmholtz." When the surface char-
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acteristics of a picture can be seen or when binocular disparities grade
uniformly across the surface,

an unconscious intuitive process of psychological compensation
takes place, which rgstores the correct view when the picture is
looked at from the wrong position.

Overall, Pirenne’s notion and that of others (Green 1983, Kubovy 1986)
suggests that unconscious inference unpacks the deformations through
some process akin to mental rotation.'> What is most interesting to me,
however, is that compression and shear in the depicted environment
are not normally acknowledged by the observer. Within broad limits,
affine transformations seem to preserve most of the character of most
objects to a satisfactory degree. What we need, however, are assessments
that address this issue.

Static Displays
Empirical investigations of La Gournerie’s paradox are relatively few.
Consider first those relevant to viewing pictures at right angles but at
different station points along the picture normal. Adams (1972), for
example, presented perspective line drawings of tiled floors to observers
who viewed them from one, two, and four feet with either one or two
eyes. The amount of depth imputed to the displays varied appropriately
with viewing distance, but in all cases depth was underestimated. One
reason for this underestimation, however, may be the fact that accom-
modation and convergence (weak information sources for depth} are
effective within this range. The major point to be emphasized, however,
is that the extent of virtual space is always a function of viewing distance. .
Similarly, Hagen and Elliott (1976) presented line drawings of geo-
metric figures to perceivers in polar perspective appropriate for their
viewpoint, in parallel projection, or in between (closer than infinity
but farther than normal viewing). All images were normalized to the
same physical size and mounted on poster board. Hagen and Eliott
asked viewers to indicate which version among paired comparisons
looked more like an “accurate drawing” or a “realistic picture.” Sur-
prising to me is that their viewers generally preferred the images in
parallel projection. Hagen and Elliott called this the ““zoom effect,”
where the results appear to indicate that observers, when looking at
pictures, would rather have them taken with a telephoto (zoomed} lens
than with a normal one. This, they claimed, makes the image most
neutral with respect to the station point and, somehow, best serves
when the image’s flat surface is perceivable. Some are critical of Hagen
and Elliott’s work," but, possible qualms aside, an important point



38 Information for Vision

r——

fiat
screen g‘é;zgg
a b
Figure 3.2

Isodeformation contours proposed by Meister (1966) for (a) flat and (b) curved cinema
projection screens, Index 7, on the left-hand side of each parel, measures static distortions;
index m, on the right-hand side of each, measures distortions resulting from motion.
Both 7 and m are based on affine transformations causing compression in the width of
an image.

remains: There is something perceptually right but logically wrong
about parallel projection.

Viewing pictures from the side has an equally interesting set of anal-
yses and results. Meister (1966, p. 179), for example, suggested that
in every cinema auditorium, there

will be an area of viewing in which the distortions are not noticeable;
another area in which distortions are noticeable but tolerated; and
finally, a third area in which the distortions will not be tolerated.

Meister then analyzed the distortions of images projected onto flat and
curved screens when viewers sit at various places in an auditorium.
Consider flat screens first. Because by Leonardo’s analysis distortions
are greatest at the edge of a planar projection, Meister's metric # denotes
the maximum affine distortion at the far edge of a screen from any
viewpoint. Thus, if a viewer sits down front and to the right, distortions
of the left edge of the screen are measured. The metric is similar to
the foreshortening ratio in axonometric projection: It is the visual angle
for the width of an image seen from a point along the normal to the
edge of the screen divided by the angle of that image when seen from
any other equidistant point. Static isodeformation contours for a flat
screen are shown in figure 3.2a. A similar calculation is used for curved
screens, and the results are shown in figure 3.2b, Although no empirical
data are reported, Meister suggested that distortions are not noticed
when n is equal to or less than 1.1, tolerable when # is less than 1.4,
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and intolerable when 7 is 1.4 or more, From figure 3.2 these estimates
seem sensible, if somewhat conservative, and they are generally sup-
ported by experimenfal results.

Perkins (1972), for example, showed that rectangular and nonrec-
tangular parallelepipeds (boxes with parallelograms for sides) can be
discriminated accurately when line drawings of them are seen in full
face (90° to the picture plane). Moreover, when viewed from 41°, he
found that discrimination judgments are no less accurate but that per-
formance deteriorates considerably when that angle is 26° (Perkins
1973, 1982, 1983). In the latter case but not the former, performance
was clearly influenced by distortions in virtual space. Elaborating this
scheme, Hagen (1976) showed slanted pictures to children and adults.
Her results show that size judgments are unaffected in slanted pictures
and that the results hold for both adults and children.’ Together, these
results suggest that affine- and perspective-transformed information in
slanted pictures may be as easy to pick up as untransformed information
in the optic array. They can also be taken as indicating a certain tolerance
of the visual system for plastic deformations, a topic in chapters
4and 7.

Dynamic Displays

Little experimentation relevant to La Gournerie’s paradox has been
conducted with dynamic stimuli, a situation bemoaned by Hochberg
and Brooks (1978) and by Haber (1983c). We are probably all familiar
with sitting near the front and side of a movie theater but fully enjoying
what is displayed. We often do not notice that the virtual space is
collapsed in depth along the z axis and that objects in virtual space
behave as if they were nonrigid when undergoing rotation and
translation. ‘

Braunstein (1962, 1976) investigated the perception of coherence
(rigidity) and depth in dynamic displays. Viewers were presented with
displays in parallel projection and in three degrees of polar perspective,
where the computed station point was 2-, 4-, and 16-stimulus radii
from the object. Most interesting was the fact that with higher per-

spectives (that is, with the station point closer to the rotating dots), the

object appeared more depthlike, but that with lower perspectives, it
appeared more rigid. These results support Hagen and Elliott’s “zoom
effect,” generalized to dynamic displays. In order to perceive rigid
objects, parallel projection may be preferred when information about
the display surface is salient (typically from stereopsis). In movie thea-
ters, however, the distance to the screen is much greater and stereoscopic

differences much diminished.
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Meister (1966) also investigated distortions for moving objects on
flat and curved projection screens. A new index was calculated for the
image of an object moving across the screen; m is the ratio of the visual
angles of the image width at the near versus the far edge. The m values
for planar and curved screens are also given in figure 3.2. Again, no
empirical data are reported, but Meister suggested that at values below
1.4 distortions are not noticed; values between 1.4 and 2.0 produce
tolerable distortions, and values above 2.0 produce intolerable distor-
tions. These isodeformation contours curve away from the screen in
an odd manner, but they may properly reflect esthetic judgments.
Nevertheless, Gibson's (1947} motion picture testing data give no sup-
port for such contours. Gibson’s study showed no diminution of per-
ceptual abilities for viewing cinema clips far off the midline of the
theater.

La Gournerie’s paradox is important if we are to understand the
effectiveness of cinema—distortions may or may not be less disruptive
than those for static pictures. Such effects must be better understood
if we are to have a coherent theory of visual perception. One resolution
of the paradox is to suggest that there may be invariants preserved in
dynamic affine-transformed images and that perception uses these in-
variants. Such a sketch, however, does not solve the problem. We must
discover what these invariants are and determine if and how they are
used. The four experiments in chapter 7 are devoted to this pursuit.

Perception and Cues

More important to perceptual theory than La Gournerie’s paradox is
the concept of cues. This notion is quite old and has almost always
been used in the discussion of the perception of layout in pictures. The
term cue derives from sixteenth-century theater documentation. It was
the abbreviation g for the Latin quando, meaning “when.” It was used
in a script as a prompt for an actor in the performance of actions. It
was a single bit but entailed other information only hinted at. The cue
was a coded signal, or symbol, and only the well-informed could decode
it. It demanded a store of knowledge on which to act. By analogy, cues
to perception are coded, nonspecific sources of information associated
through learning with the layout of objects in depth.*®

To discuss cues to perception is to accept perception as an inferential
process that proceeds from impoverished information. As in theater,
a cue signals the perceptual systemn to do something, to carry out a
process that is well learned and prestored. Cues for depth are thought
to hint at the layout of objects, from which it was thought that the
perceptual system might make systematic inferences, performing some
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Figure 3.3

The height of the base of an object on the projection surface, in this case Leonardo’s
window, within a vertical column of the optic array yields perfect ordinal correlation
with distances in the environment.

calculation or remembering some relation from experience. In this man-
ner, the cue concept handily fits that of sense data. Cues are thought
to have some probabilistic value between 0.0 and 1.0, but generally
not at the certain extremes (Brunswik 1956, Gibson 1957b). Guarded .
inferences about distal stimuli, it was thought, must be based on the
relative trustworthiness, or cue value, of proximal information.

It turns out that these inferences for perception, or whatever they
are called, need not be so guarded. Indeed, many cues to layout of
objects in depth are hardly subtle: They hammer home to the perceiver
certain relations among objects in the visual world. They specify certain
aspects of what is perceived, and they allow for few, and at most times
no, alternatives. Under many circumstances there is a one-to-one map-
ping between what is displayed in the optic array and the physical
relations among the objects and observer. Consider two so-called cues
to the perception of the layout of objects in depth.

Two “Cues” to Layout in Depth

One source of information about layout comes from Euclid: height in
the profection plane. If we consider Alberti’s window and the projections
of those objects on it, then we have a situation like that shown in figure
3.3. Because an observer’s eye is always some distance above the surface
of support and because almost all objects in the real world are planted
firmly on that surface of support, the angle at the eye between the
horizon and the base of an object on the ground is always smaller the
farther it is from the observer. In other words, this cue is really an
invariant, an ordered relation between distance in the environment
and height in the plane (below the horizon). It is a trustworthy source
of information perceivers use {(see, for example, Dunn et al 1965). The
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Figure 3.4

The angular height of the projected image of an object divided by the angle of its base
to the horizon can be used to judge its height relative to the observer. The bush is
marginally less than half the eye height because a, is exactly half §,; the height of the
tree is exactly twice the eye height of the abserver since a, is twice g,.

world simply comes furnished this way, and this law of optics is seldom
controverted,

A second source of information is the horizon ratio, first 1mpl1ed by
Euclid, discussed by Gibson (1947, 1950), and worked out in detail by
Sedgwick (1973, 1983). The horizon ratio compares the height of objects
in the environment to the height of the observer’s eye. The basis of
the calculation is that the horizon is functionally at an infinite distance.'s
It follows, then, that horizon and eye are at the same height, a fact
Edgerton (1975) called horizon-line isocephaly. The horizon ratio works
as shown in figure 3.4. Because the line from eye to horizon can be
considered parallel to the ground plane, any point on any object that
intersects the line of sight to the horizon is exactly one eye height
above the ground. Thus, if the top of a bush is the same height as the
horizon, that bush is as tall as the observer’s eye is above the ground.
If the top of the bush does not come up to the horizon, it is shorter,
and if it goes above the horizon, it is taller. What is useful about this
formulation is that certain metric information is roughly preserved. If
the height of an object is equal to the angle from the top of the object
to the horizon, then that object is 0.5 eye height tall. If, on the other
hand, the portion of the object that projects above the horizon is equal
to that portion below, then it is two eye heights tall. This information
is precisely what makes the horizon ratio useful in scaling the
environment,

Overview

Pictures inform us about objects and events in our environment. The
fact that the visual system seems to accommodate picture slants and
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other distortions suggests either that cognition rectifies the affine changes
of virtual space, as Pirenne suggested, or that such distortions are not
noticed to the degree that we might expect. The former view suggests
that we must be acutely attuned to orthogonal dimensions in real space
and modify our perceptions of virtual objects in slanted pictures, whereas
the latter entails neither. Although little that will be presented later
hangs on a decision between the two, my bet is on the latter. I suspect
that we are more concerned with satisfying betweenness than with
preserving right angles and right corners. .

The final discussion compared the notions of cues and specification.
Embedded in this distinction are several important philosophical and
theoretical issues. The most important is the relationship between in-
formation and objects: Information can either hint at an attribute of
an object or specify it. I take the latter view, which is bound in the
idea of invariants for perception, the topic of chapter 5. I discuss cues
again in later chapters. Those cues not tied to relations among projected
elements in the optic array I call nonrelational cues. But let me now
turn from a discussion of pictures and pictorial space to a discussion
of real space and its philosophical underpinnings.
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Space

Projections and photographs must have something “behind” them—
objects laid out in space. In this chapter I discuss various epistemological
views of three-dimensional layout and its perception. These divide
three ways. The first view is a set of philosophical issues relating space,
perception, and geometry; the second is what I regard as the misuse
of certain facts of optic projections to build theories of visual perception;
and the third is a sidelight on non-Euclidean geometries and perception.

Antinomies of Space, Perception, and Geometry

Space has almost always been considered an abstract container into
which the physical objects. of the world are poured. In Timaeus, Plato
presented an early version of this idea (Jowett 1952, p. 457):

Wherefore, the mother and receptacle of all created, visible, and
in any way sensible things, is not to be termed earth or air, or fire,
or water, or any of their compounds, or any of the elements from
which these are derived, but is an invisible and formless being
which receives all things, and in some mysterious way partakes
of the intelligible, and is most incomprehensible.

The view creaks with age, but its stated relation of space to objects is
not only acceptable but also essential. Plato provided no basis for the
unfortunate but common phrases of “space perception” and “depth
perception.” That is, we cannot perceive space, only the objects in
space. Similarly, because depth is but one dimension arbitrarily picked
out of the dimensions of space, we cannot perceive depth, only objects
laid out in depth.

Plato’s views led to many issues that taxed later philosophers. Some
that caused particular concern were place versus space, where the former
delimits the boundaries of an object in the latter; extension, the way
in which matter occupies space; vacuum, what happens to space when
no matter is present; impenetrability, the fact that two entities of the
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same kind cannot occupy the same space;' and the relation between
physical space and mathematical space. It is only the last of these that
[ pursue. In the many ways in which space, perception, and geometry
interrelate, there is a set of inherent antinomies, or paradoxes, that
stem from a series of premises:

1. Geometry is about space.

2. Geometry (“earth measure”) governs relations among physical
objects.

3. Geometry is among the most trustworthy bodies of knowledge.

4. Space is known through the layout of objects we perceive.

5. Perception is untrustworthy.

For the purposes of this discussion the major paradox of the group
is found in the juxtaposition of statements 1, 4, and 5: It seems odd
that our perception of objects in space can be both infirm and a basis

for a branch of mathematics. Broader than this antinomy, however, -

are the puzzles broached by the whole set. Their enormity has engaged
philosophers steadily for the last four centuries.

Most philosophers agree that the integrity of statements 1 and 3 is
to be preserved at all costs. There have been several solutions to par-
adoxes that have arisen concerning the relations of statements 1 and
3 to the other statements. 1 discuss them in more detail later, but in
précis, consider two. The first decouples statements 1 and 2: Physical
space and mathematical space are not the same and should not be
confused. This view is older than the existence of non-Euclidean geom-
etries and has a certain appeal. Nevertheless, it denies some important
history. We should not forget that Euclid’s Elements was the general-
ization of the layout of objects in physical space (Hempel 1945). A
second solution is to falsify statement 4, suggesting that space is an a
priori, purely Platonic entity. On this view, our perceptions of objects
in space usually corroborate our intuitions about space, but they do
not establish them. This notion makes some sense, and because it
removes perception as a direct foundation for space (statement 4), it
removes it as an indirect foundation for geometry. But his solution
raises a question about statement 5 that is rarely asked: Why is per-
ception considered so untrustworthy? If perception corroborates in-
tuitions of space and if space is mathematically specifiable, how could
perception be so infirm? One answer is simply that it is not.? Error in
perception, it seems to me, has been overemphasized. This view was
perhaps first espoused by Reid (1785, pp. 199-200):

Complaints of the fallacy of the senses have been very common
in andient and in modern times, especially among the philosophers,
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If we should take for granted all they have said on this subject,
the natural conclusion from it might seem to be, that the senses
are given to us by some malignant demon on purpose to delude
us, rather than that they are formed by the wise and beneficent
Author of nature, to give us true information of things necessary
to our preservation and happiness.

With Reid, and in line with the Epicurean school of ancient Greece, [
claim that a span of continuous perception accrued over time with
motion and movement is a bedrock on which we can build anything,
on which evolution can continue and societies develop. For centuries
that bedrock was conceived as natural geometry.

Natural Geometry from Kepler to Kant
The term natural geometry was first used by Kepler in 1604. The only
psychological remnant handed down from Euclid’s Optics, natural ge-
ometry is an internal “distance measuring triangle” used to compute
distance and size of an object (Maull 1980, p. 36). Elaborated somewhat,
natural geometry suggests that mental space and, to extend the idea
even further, mental transformations have many of the features of
physical space and physical transformations—an idea popular today.?
Kepler's notion, however, attracted less attention than it might have.
It was only with Descartes and his Dioptrics of 1637 (Anscombe and
Geach 1954) that the concept aroused interest in how spatial relations
are perceived. For Descartes, natural geometry was not about space
itself but was an innate psychological algorithm (Epstein 1977), even
a mechanism for unconscious inference.*

In espousing the idea of natural geometry, Descartes was most con- '

. cerned with the inversion of the retinal image, noted earlier by Leonardo

and Kepler, and with the different projections to the two eyes. Never-
theless, the recovery of spatial relations in the environment was central
to his wishes. Natural geometry was a means by which the mind could
interpret spatial relations, meshing perceived and physical space. It
was as if, -according to Descartes and going somewhat beyond him,
the mind used rules of projection to recover relations among objects
projected on the retina. How these rules were used and what they
might be was never made clear.

Descartes’s position was roundly criticized by Berkeley in his Essay
towards a New Theory of Vision. Berkeley argued that natural geometry
was a spurious conflation of math and nature (1709, para. 14):

Those lines and angles have no real existence in nature, being only
“an hypothesis framed by mathematicians, and by them introduced
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into eptics, that they might treat of that science in a geometrical
way.

Berkeley also claimed that any idea that was not itself experienced,
such as natural geometry, could not be used as the means of perceiving
any other idea. This second retort seems archaic and unconvincing
today, but his first struck deep at the foundations of geometry.” Grad-
ually, it became clear that something was desperately wrong with state-
ments 1 through 4. Berkeley was among the first since Plato to suggest
a form of statement 5, that visual perception is infirm.

These ideas generally festered until Kant. For Kant, human experience
of the world is largely constructed by an active mind. He said little
about how we perceive objects in space, but his ideas were central to
all later thought: Space is transcendental, the first principle of our
perceivable world; it is subjective and ideal, continuous and undelimited,
arising not through algorithm but preexisting as a framework into which
the layout of objects in physical space is fit. His basic tenet was a
response to Berkeley's first criticism of Descartes; he removed geometry
from the experiential realm. Geometry became an odd hybrid, both
synthetic and a priori. It was synthetic in that it brought together new
notions that did not simply result from logical analysis, and it was
a priori (or prior to perceptual experience} because it would not be
trustworthy otherwise. Following Berkeley, Kant placed geometry in
the domain not of the physical but of the mental, where proof and
obviousness rule rather than measurement. Nonetheless, geometric re-
lations in the world are real. In fact, following Euclid, Kant was quick
to add in his address of 1770 that ‘'the laws of sensuality [perception]
will be the laws of nature so far as it can be perceived by our senses”
(Eckoff 1970, p. 66).

After Kant, the concept of natural geometry fell on hard times. Its
decline was unfortunate for the study of perception. Left unexplicated
was the problem recognized by Descartes but swept aside by Kant:
How do we know the layout of objects in space from the information
given on our retinas? Space may be a priori, but layout is not. The fall
of natural geometry was made even more precipitous in the nineteenth
century with the discovery of non-Euclidean geometries. These new
systems drove stronger wedges between statements 1 and 2. Seemingly
horrible questions arose: Is perception so untrustworthy, as suggested
in statement 5, that it cannot be used to decide the nature of physical
space? Cannot perception at least corroborate geometry, in a weakened
version of statement 47
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Physical Space and Non-Euclidean Space
In the nineteenth century, alternative geometries were discovered.®
These substituted for Buclid’s fifth (or parallel) axiom a different one,
starting with a line and a point not on it. These geometries allow either
more than one straight line through the point parallel to the first line
(Lobachevskian) or no parallel lines through it (Riemannian). Another
way to consider them is with regard to the sums of the angles of a
triangle: In Euclidean geometry the angles always sum to 180°, but in
Lobachevskian geometry they always sum to less, and in Riemannian
geometry, to more. The degree to which a particular non-Euclidean
geometry deviates from this value is a measure of its curvature.
Kline (1980) attributed the fall of mathematics from a central position
in Western epistemology to these discoveries. It is easy to imagine the
enormous stir, within and without mathematics, created by the plurality
of geometries. From within, this stir was exemplified by Gauss, who
began to question statement 3 (but not statement 2) as early as 1817
(Torretti 1978, p. 55):

Maybe in another life we shall attain insights into the essence of
space which are now beyond our reach. Until then we should class -
geometry not with arithmetic, which stands purely a priori, but,
say, with mechanics.

Gauss worried extensively about the implications of these new geom-
etries. In a letter to a fellow mathematician, he wrote (Daniels 1974,

p. 21}

Exactly in the impossibility of deciding a priori between ...
Euclidean geometry . ..and S [Bolyai’s, and later Lobachevski’s,
geometry] lies the clearest proof that Kant was wrong to maintain
that [physical] space is only the form of our intuition.

Because of this affront to Kant, Gauss encouraged mathematicians to
keep their geometry-shattering discoveries in low profile until foun-
dations were secured.” He feared most the “uproar of the Boeotians”
(Torretti 1978), in reference to the loose confederation of outsiders that
threatened Athens and Sparta before Alexander the Great. The Boeotians
were quiet for nearly fifty years, but eventually they did roar.

Not surprisingly, psychologists and philosophers roared most. Wundt,
for one, was furious. Appealing to statements 1, 2, and 4, he suggested
in his Logik (Torrettt 1978, p. 292) that

the order of the objects of the real world according to the laws of
our three-dimensional flat geometry . . . is the factual expression
of the real order of phemomena, which cannot, as such, be replaced
by any other order.
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Lotze (1878, p. 276), for another, was more curt. He thought these
new geometries were “one huge coherent error.” And Frege (1884,
p. 20e), unwilling to give up any of the first four statements, attacked
the nonintuitability of these new geometries:

Empirical propositions hold good of what is physically or psy-
chologically existent, the truths of [Euclidean] geometry govern all
that is spatially intuitable, whether existent or product of our fancy.,
The wildest visions of delirium, the boldest inventions of legend
or poetry . . . remain, so long as they remain intuitable, still subject
to the axioms of geometry. Conceptual thought can after a fashion
shake off their yoke, when it postulates, say, a space of four di-
.mensions or of positive curvature. To study such conceptions is
not useless by any means; but it is to leave the ground of intuition
entirely behind. If we do make use of intuition even here, as an
aid, it is still the same old intuition of Euclidean space, the only
space of which we can have any picture.

Others were more careful, seeing that the philosophy of perception,
space, and geometry must change. For example, Helmholtz (1870,
1878b) became interested in the general nature of our knowledge about
space and particularly in the extent to which the axioms of geometry
have empirical reference. Like Gauss, he realized that Kant’s conception
of space was three dimensional and Euclidean. To Helmholtz it seemed
unlikely that all mathematical spaces could be a priori, so he made
three suggestions. First, contrary to Frege, he stated that all the new
geometries were conceivable and imaginable by the mere fact that they
had been formulated. Thus no geometry could be truer than another
either as a closed system of postulates or as a reflection of intuitive
space, Second, on the basis of personal experience, it was not possible
to determine which geometry best reflected the physical space of our
world. If space is infinitely extended, has only three dimensions, and
has a constant curvature of zero, then no geometry but that of Euclid
is true for the physical world. But if the space were sufficiently curved,
then, Helmholtz (1878a, p. 403) stated: . '

As an exponent of the empirical theory of perception, I believe
that anyone, in passing from Euclidean to pseudospherical space,
would at first believe that he saw apparent movements of the
objects around him but that very soon he would learn to adjust
his judgments of spatial relations to the new conditions.

Third, Helmholtz suggested that the value of the curvature of physical
space must be constant and that it can be determined only empirically
with instruments that extend experience. It cannot be a priori, because
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there are no a priori constraints on curvature. Helmholtz (1878b)
ultimately concluded that Kant was right on one count but Wrong on
another: Space is a necessary form of intuition, but Fuclidean axioms
are not part of it. In this manner, he freed physical space, and with it
natural geometry, from the bonds of the abstract. Furthermore, he tried
to make their bases empirical. It was an excellent gambit, but it met
with opposition.

Russell (1897) presented the most broad-based reply, criticizing
Helmholtz on three counts. First, he chastised Helmholtz for assuming
that measurement of curvature is completely empirical, involving no
a priori assumptions. Measurement, according to Russell, can take place
only within an assumed geometry; thus empirical research cannot be
the grounds for deciding the true form of physical space. Later, however,
Einstein (1922} would defend Helmholtz’s position. Second, Russell
discussed, as many others had previously, the imaginability of geom-
etries. Most ““Boeotians” aligned themselves with Frege, suggesting that
intuition was Euclidean in form.® Helmholtz (1878b), however, had
suggested that any space that can be described can be imagined. Russell
thought this was a poor choice for a criterion of imaginability, Psy-
chologically, however, it seems odd for Russell to have placed so much
emphasis on images in proof or refutation of the form of space: Images,
worse than percepts, are not foundation-making material, Russell’s
third critique was the one he thought most damning: Helmholtz, perhaps
following Gauss implicitly, based his notions of geometry on the me-
chanics of rigid bodies mobile in space. Noting the inherent circularity

~ of such a position, Russell (1897, p. 81) suggested that

to make Geometry await the perfection of Physics, is to make
Physics, which depends throughout on geometry, forever impos-
sible. As well might we leave the formation of numbers until we
had counted the houses in Piccadilly.

Most felicitously for this work, however, Russell (1897) went on to
describe projective geometry as the basis of space and perception. He
later recanted this view (Kline 1980), but the position remains attractive
in that it allows continued close connections among geometry, physical
space, and perception.

Three Views: Apriorism, Empiricism, and Conventionalism _
By the end of the nineteenth century, three views of geometries and
space had emerged, two of which have already been discussed. They
can be treated as a nested set. The oldest and most influential is aptiotism,
stretching from Plato to Kant and beyond to Russell and to Wiener
(1922). Apriorism proposes that geometry and space are simply given.,
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This view was so strongly held for so long that even Hume, an otherwise
archempiricist, regarded geometry as a nonempirical discipline in which
proof lies in the relations of ideas rather than in those of physical stuff.’
But in the nineteenth century, particularly with the discovery of non-
Euclidean geometries, other views emerged.

The second view was empiricism, founded on the success and meth-
odology of science. Euclidean geometry could be regarded as a com-
pelling theory about physical space: It was corroborated by experience
(perception) and experiment, but like all good theories it remained
eminently falsifiable (subject to disproof). Non-Euclidean geometries
were also viable theories, but less plausible on the basis of experience.
Such a view was held by a wide variety of thinkers. These included
Helmholtz, who was actively engaged in empirical endeavor; Gauss,
Lobachevski, and Riemann, who established the new geometries; and
John Stuart Mill and Ernst Mach.

Mach (1906) proposed that geometry has three roots: biology, pet-
ception, and logic. That is, we are biologically predisposed to know
space (the aprioristic root), we arrive at geometric concepts as an ideali-
zation of what we perceive, and we systematize these ideals into a
mathematics. Amplifying the last two, Mach (1906, pp- 124-125) stated:

Geometry, accordingly, consists of the application of mathematics
to experiences concerning space. . . . Just as mechanics can assert
the constancy of masses or reduce the interactions between bodies
to simple accelerations only within limits of errors of observation, so
likewise the existence of straight lines, planes, the amount of the
angle-sums, etc., can be maintained only on a similar restriction.

Thus Mach suggested that the roots of geometry can be only as sound
as those of perception and that statement 5 must be false.

But of all empiricists Mill is most interesting. His position was little
different from Mach’s stripped of Kantian features. It was proposed
more than a half.century before, apparently without knowledge of non-
Euclidean. geometries (Torretti 1978). Mill (1843, p. 147), affirming
statements 1, 2, and 4, denied the existence of most geometrical objects:

There exist no points without magnitude; no lines without breadth,
nor perfectly straight; no circles with all their radii exactly equal,
nor squares with all their sides perfectly right.

Sidestepping statement 5, which in other contexts he also believed to
be true, Mill suggested that we smooth out the natural irregularities
of geometrical objects. These objects, he said (1843), have a “capacity
of being painted in the imagination with a distinctness equal to reality:
in other words, the exact resemblance of our ideas of form to the
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sepsations which suggest them” (p. 154). An anti-Platonist at heart,
Mill (p. 404) suggested that geometry was one of the natural sciences,
as much subject to natural law as physics:°

Every theorem of geometry is a law of external nature, and might
have been ascertained by generalization from observation and ex-
periment, which in this case resolve themselves into comparison
and measurement. But it was found practicable, and being prac-
ticable, was desirable, to deduce these truths by ratiocination from
a small number of general laws of nature, the certainty and uni-
versality of which are obvious to the most careless observer, and
which compose the first principles and ultimate premises of the
science.

The third view is conventionalism. This position was expounded most
clearly by Poincaré (1905), and it builds on both previous views. Science,
according to Poincaré, is a domain of hard facts, known through the
senses and their extension, scientific instruments. But in order to report
these facts, scientists must agree on the format in which they are to
appear. The format is chosen by convention, tacitly agreed on by the
members of the discipline. A geometry, in Poincaré’s view, is just such '
a format. All physical facts of the world could just as well be placed
in non-Euclidean geometries with small but continuous curvature as
within a Euclidean system. To make this idea more concrete, Poincaré
(1905, p. 51) generated the following possible-worlds argument against
Helmholtz:

Beings whose minds were made as ours, and with senses like ours,
but without any preliminary education, might receive from a suit-
ably-chosen external world impressions which would lead them
to construct a geometry other than that of Euclid, and to localise
the phenomena of this external world in a non-Euclidean space,
or even in space of four dimensions. As for us, whose education
has been made by our actual world, if we were suddenly transported
into this new world, we should have no difficulty in referring
phenomena to our Euclidean space.

Thus for Poincaré it was through happenstance and a concern with
certain geometrical problems that we stumbled on a Euclidean de-
scription of the physical world. Others stumbling on different problems
from a “suitably chosen” array might happen on other geometries.
Through cultural tradition these geometries spread as conventions, or
contracts, about dealing with the real world, and they are intercon-
vertible when dealing with the same physical space.
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In other words, some biological givens are necessary to perceive
objects in spatial relation, consistent with apriorism. And, consistent
with empiricism, geometry arises with experience. But the particular
geometry does not arise invariably from what we perceive: Historical
accident and cultural tradition pick out important observations, and
these are systematized into a geometry, which provides a formal de-
scription of our intuitions and perceptions. Ultimately, Poincaré’s po-
sition is one of espousing all the first four statements listed and regarding
the fifth as inconsequential or false. His view assumes a predisposition
to perceive and know spatial relations, and his epistemology is based
on the perceived layout. Geometry simply becomes a conventionalized
system in which to capture experience.' But Poincaré did not have the
last word. In 1902, Hilbert formally removed perception and reality
from the foundations of geometry (Kline 1980). Since Hilbert, the axioms
of geometry begin with statements about what we imagine—always a
less constrained psychological concept—not with what we perceive.
With this change the tie between mathematics and natural phenomena
was broken, as Berkeley would have wanted, and statements 1 and 2
were separated.’? This odd result was perhaps best captured by Einstein
(1922, pp. 28, 31), who said:

As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain they do not refer to reality. . . .
Yet on the other hand it is certain that mathematics generally, and
particularly geometry, owes its existence to the need which was
felt of learning something about the relations of real things to one
another.

First OQverview

There is an idea in the philosophy of space that physical space can be
geometrized (measured exactly by mathematics) and that objects in it
are perceived in geometric relations (measured inexactly by the eye).
The conundrum for two thousand years was that the foundations of
geometry seemed experiential, that our experience was inexact, but
that geometry was exact and pure. Eventually, perception was removed
from the foundations of geometry. But its removal as a pillar of geometry
should not deter us from considering its reverse: Maihematics may have
its origin, but not its basis, in perception, but visual perception can stiil
have its basis, but not its origin, in geometry. In turn, epistemology can
then have both its origin and basis in perception and can have it more
firmly planted there than has typically been allowed.
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But space is not the exclusive province of philosophers. Among many
others, psychologists have a central interest in space in their effort to
understand perception of objects in the world. In the next two sections
I approach theories about the perception of objects in space in two
ways: historically, from the notion of ambiguity in projections, and
geometrically, from the notion of non-Euclidean visual space.

Perception, Projection, and Theories of Space

Discussion of projections and projection techniques has been central
to theories of visual perception for more than three centuries. These
techniques, although as old as Euclid and Ptolemy, were incompletely
understood when Berkeley put forth his theory of vision. They were
nonetheless influential. A central argument came from Molyneux (1690,
p- 113}

For distance of itself, is not to be perceived; for "tis a line (or a
length) presented to our eye with its end toward us, which must
therefore be only a point, and that is invisible. '

This analysis, known as Molyneux’s premise (Pastore 1971), fascinated
Berkeley (1709), and he used it in his essay as its second statement.
At base, it is a discussion of projective distortions of a line at the limit.
The problem with Molyneux’s analysis, however, is that the length of
a single optic ray is irrelevant to perception; it is the cross-sectional
relations among collected contiguous bundles of rays that is important.
Vanishingly few real lines in our environment are ever seen end on,
projecting down their length. As Euclid realized, systematic patterns
of convergence are created through recession in depth of multilined
environments.” X

After Molyneux, projections continued to intrigue philosophers. One
of the more widely discussed illusions of the eighteenth and nineteenth
centuries was the windmill illusion. Smith (1738) and Helmholtz (1866),
among others, discussed it in detail. The illusion occurs at dawn or
dusk when a windmill is seen in silhouette from relatively far away
and in half-profile. The blade spins and, even though the polar per-
spective is appropriate for seeing the windmill from the front, spon-
taneous reversals occur, as if the windmill suddenly faced away from
the observer. The illusion is sufficiently compelling, according to Miles
(1929), that selling windmills was at risk: New owners often complained
that theirs turned the wrong way.'* We are more familiar with spon-
taneous reversals of figures shown in parallel projection, such as the
Necker cube discussed in chapter 2. Windmills show that illusions of
motion and of configuration are not wholly foreign to real life and that
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the optics of polar perspective are not so incontrovertible that the visual
system might prefer an object in reverse orientation. If allowed to walk
around the windmill, the observer will find the illusion unstable, and
if tried at midday, the illusion will not occur at all. Veridical perception
will win out,

Despite the fascinations of Molyneux, Berkeley, Smith, and Helm-
holtz, projections and perspective played a small role in perceptual
theory until the middle of this century. Then it suddenly assumed a
leading role, ironically as a blackguard and villain. Rather than providing
the foundation for realism, perspective was assumed to demonstrate a
kind of sutrealism, which in elaboration of Poincaré could be made
sense of only through the conventional bases of society.

Adelbert Ames
The first systematic study of perception and projection was that of
Adelbert Ames. Promoting a transactionalist approach and subsumed
by the philosophy of Dewey, Ames compiled a series of striking dem-
onstrations promoting the idea that we bring a rich set of expectancies
to every perceptual situation.” These were thought to demonstrate the
degree to which the assumptive world, a contractual by-product of our
culture, is overlaid on the physical world. The two best-known dem-
onstrations are the Ames room and the rotating trapezoidal window.
The Ames room is a chamber that, when viewed from a small peephole,
looks like a perfectly normal room. In fact, it is carpentered as an
irregular sexahedron with no visible right angles. The effect, however,
is so compelling that, when people walk around within the room, from
the peephole view they may appear to change size. The transactionalist
account of this effect is that we come into the situation expecting to
see a regular room and therefore we see it. This is a wonderfully elegant,
if overly persuasive, demonstration of Cartesian natural geometry. The
rotating trapezoidal window is simlarly successful but this time includes
motion. The window is actually a trapezoid but constructed and painted
to have the general look of a rectangular window frame seen from an
oblique angle, say 45°. When rotated on a vertical axis and viewed in
rather dim light from a distance of about ten times its radius, the
window appears to oscillate, moving back and forth, rather than rotate.
The optics of polar projection are violated when interpreting the window
as oscillating, but the percept is robust and almost irrepressible.
Neither illusion works well under somewhat altered conditions. In
the Ames room, for example, if the observer looks from a point displaced
from the designated viewpoint or, even better, if the observer moves
around while looking into the room, its true shape becomes apparent.’
In the trapezoidal window illusion, if the observer views the apparatus
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from closer up, the perceived oscillation ceases and rotation takes its
place. Ames and his followers suggested that our knowledge about the
way the world ought fo be governs our percepts in ambiguous situations.
I suggest, however, that what the transactionalist work demonstrates
is that experimenters must be quite clever in devising situations both
rich in information and illusory. Polar perspective viewing, the kind
that we do in everyday circumstances, is almost completely satisfactory
in revealing the layout of surfaces and objects around us.

James Gibson and Gunnar johansson

Gibson (1950, 1979), of course, espoused almost exactly this view. He
was continuously interested in projections and in a geometric under-
standing of them.'” But he also had a deep skepticism about the ultimate
explanatory value of projective geometry (Gibson 1970). His rationale
seemed a good one: Projective geometry knows only lines; it does not
know surfaces, and it does not deal with occlusions of one surface by
another. Johansson (1970, 1974, 1975, 1978), on the other hand, like
Russell and Poincaré before him, suggested that projective geometry
is the basis for visual perception. For Johansson, vision makes no sense
outside of this framework. He emphasized the role of projections in
the same way Kepler emphasized natural geometry: The rules of pro-
jective geometry are decoding principles applied to the optic array.
I have more to say about the positions of Gibson and Johansson in
chapter 9.

Projective geometry, then, is a wire-frame description of the world
without filled-in surfaces. Gibson recognized that opacity is an important
property of surfaces and that projective geometry could not deal with_
it. My solution to this dilemma is pragmatic. Rather than discarding
projective geometry, I try to use it as much as possible under the
assumption that the problems of occlusions and projections are inde-
pendent of one another. In particular, I assume that occlusions can be
dealt with later on their own terms and do not jeopardize this discussion.

Perception and Geometries of Curved Space

Euclid assumed the rectilinearity of rays and hence of uncurved space.
But maybe space, or at least its perceptual counterpart, is not rectilinear
at all. Thomas Reid {1764) appears to have been the first to suggest
that “the geometry of the visibles” is a spherical rather than a Euclidean
geometry. Implicit in Reid’s view is that the surface of the cornea and
retina are curved projection surfaces and that these measure the visible
world. Certain analyses following from this fact reveal apparent co-
nundrums for a Euclidean geometry of vision. Modern observations
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stem from Helmholtz (1866), and in general two approaches have been
made to the curvature of space.

Rudolf Luneburg and Absolute Visual Curvature

Luneburg (1947), working at Dartmouth with Ames, proposed that
“visual space” is curved, following a Lobachevskian geometry. Many
have followed this line of thinking." The theory is one of binocular
perception, specifically dealing with the coordination of projections at
the two eyes. Evidence gathered in support of a hyperbolic visual ge-
ometry is based on elaborations of an experimental paradigm generalized
from Helmholtz and explored by Hillebrand in 1902 and Blumenfeld
in 1913, The experimental situation is called the alley problem, in
which a square matrix of lights is shown to an observer. All lights are
arranged in the horizontal plane of the two eyes and placed a small
distance from them. What is interesting about this arrangement is that
the observer can achieve alternating, conflicting impressions: The lights
can be seen in a square configuration, and also both the columns of
lights extending outward and the rows stretching across may appear
curved. The last phenomenon is related to horopters of equal disparities
on the two retinas, known at least since Helmholtz, Coupled with the
curved columns of lights, they serve as the basis for measuring the
putative curvature of visual space.’

It seems to me that this experimental situation is a good example of
where effort after experimental control through stimulus reduction has
led to a circumstance from which it is difficult to generalize back to
normal perception. The most important problems with Luneburg’s work,
in my opinion, are that the observer cannot move through the envi-
ronment and that the stimulus does not move.” In particular, if the
observer could move, he or she could almost certainly discern the
difference between potential layouts, just as he or she could accurately
discern the real shape of an Ames room if left to wander about. A
second problem is that these experiments are generally run in the dark
and that the configural properties of the stimulus are the reduced re-
lations among a few Iuminous points.” Following Gibson (1950), this
is an air-theory approach to perception because the objects are dis-
embodied from surfaces of support. And third, I question the motivation
behind this type of experiment. Luneburg and associates seemed to be
in search of the inherent shape of the Platonic vessel of space into
which visual objects are placed, or perhaps in search of the axioms of
the a priori geometry of a Kantian intuitional space. Apparently, this
space can manifest itself only when almost empty. If this non-Euclidean
space were really the fundament of vision, important questions arise
(Griinbaum 1973): Why, for example, does this curved space seem to
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straighten out when it is filled with many objects? How does Loba-
chevski vecome Euclid, and why?*?

Assessments of Relative Visual Curvature

Not everyone who has proposed a non-Euclidean geometry for vision
has come out of the Luneburg tradition. Other curved-world theorists
include Foley (1964, 1966), who considered one problem in detail.
Since Helmholtz, most discussions of the possible curvature of space
have considered curvature to be constant, an assumption made by
Luneburg. Foley, on the other hand, showed deviations from constant
curvature in alleylike experiments, Striking asymmetries, as well as
large individual differences, were found.

Watson (1978) also proposed a non-Euclidean geometry for vision
to account for the perception of certain illusions. His motivation is
quite attractive: Illusions, rather than being examples of the kind of
misperception that philosophers and psychologists are so concerned
with, may actually be examples of veridical perception in a Riemannian
framework. Moreover, Watson addressed some of the questions left
unanswered by Luneburg and his associates. In particular, Watson of-
fered an account as to why we do not notice curvature in everyday
life: Real-life situations do not provide the circumstances within which
one can perform the analytic experiments necessary to distinguish a
Euclidean from a curved geometry. These can be done only under
laboratory control. Watson did not explicitly discuss amount of cur-
vature; instead, he proposed that curvature is illusion dependent.

Although I have genuine sympathy for Watson's account, his evidence
suffers some of the same difficulties as that of Luneburg. First, his
stimuli are laid out on a plane, although in Watson’s cases it is the
frontoparallel rather than the horizontal plane. But it seems odd to
generalize from an analysis of two-dimensional curvature to three
dimensions, particularly when we know that most drawings provoke
perception of three-dimensional virtual spaces. Second, Watson'’s ex-
amples, like those of Luneburg, are stimuli of few components, reduced
and impoverished when compared to the real world. Although he
considered many different types of illusions, his selection of two-
dimensional line drawings raises issues about sampling. We can gen-
eralize to almost anything from a cagey selection of exemplars. And
third, and most important for this work, Watson’s stimuli are static
pictures, Such a visual space—planar, reduced, and rigid in viewpoint—
is not the space within which we roam. It seems plausible that the
visual system struggles to do its best with minimal information. More-
over, it may be that these struggles are modeled best by some non-
Euclidean geometry. But when the visual system is flooded with in-
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formation, it seems difficult not to suggest that it reverts to principles
best modeled by Euclidean geometry and projections of it.”

Second Overview

Two aspects of the perception of space have been considered in the
latter part of this chapter—the role of projections in perceptual theory
and the possibility of a non-Euclidean geometry for vision. Projections
have played an odd role in theories of layout perception. Some theorists,
such as Berkeley and Ames, have suggested that projections prove the
infirmity of perception. Others, such as Gibson, seem overly worried
that projective geometry cannot deal with occluding surfaces. I think
neither of these positions is most prudent. Following Russell, Poincaré,
and Johansson, I suggest that projections are the foundation of vision
and that to understand them is to go a long way toward understanding
the trustworthiness of perception. Curved geometries have occasionally
been considered as best for representing visual space. This idea is in-
teresting because it forces reconsideration of major issues. Insofar as
can be determined, however, curved geometries in visual space can be
demonstrated for only extremely close viewing (Helmholtz 1866) or in
planar projections and in impoverished conditions with planar surfaces.
Given these results, my bet is that the Euclidean nature of human-
scaled space does just fine for analyses and theories of vision.

5

Invariants

Heraclitus thought the world was ever changing; Parmenides thought
it ever constant.! In truth it is some of both. There are those things
that change and those that do not. The former can be called variants,
the latter invariants. From mathematics we get the idea that some aspects
of an object or event can be invariant even while others change: Such
things are said to be invariant under transformation.

This idea has sparked new interest in a central question in percep-
tion—how do we perceive things to be constant when their projected
images continually change?® This question is a version of Koffka’s “Why
do we perceive things as we do?” Invariance under transformation, the
lack of change within a sea of change, could be the key to explaining
constancies in perception. Gibson (1967, p. 162) captured this idea as
follows:

If invariants of the energy flux at the receptors of an organism
exist, and if these invariants correspond to the permanent properties
of the environment, and if they are the basis of the organism’s
perception of the environment instead of the sensory data on which
we have thought it based, then I think there is new support for
realism in epistemology as well as for a new theory of perception
in psychology. I may be wrong, but one way to find out is to
submit this thesis to criticism.

Gibson championed this idea in perception. In recent years it has
seen increasing popularity, and there are, I think, good reasons for this
upsurge. One is dissatisfaction with the cue concept, discussed in chap-
ter 3. But more important is the realization that traditional stimulus
analyses have not been as sophisticated as they ought to be. The search
for invariants is, in part, a search for more sophisticated types of in-
formation available to a perceiver.

Underlying Gibson's cogent statement are many assumptions. In this
chapter [ investigate these and others. Because the term “invariance”
is mathematical in origin and because psychologists use it to huckster
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ideas under the aegis of the Queen of the Sciences, the first four as-
sumptions deal with the intersection of mathematics and perception.
The last three concern invariance as information. Before 1 discuss them,
however, consider a brief history.

Invariance in Perceptual Theory

The current importance of the concept of invariance is due entirely to
Gibson. lts use in perceptual theory, however, is much older. Invariance
has appeared in the tool chest of nearly every perceptual theorist.
Consider Helmholtz (1878a, p. 384):

I should like, now, to return to the discussion of the most fun-
damental facts of perception. As we have seen, we not only have
changing sense impressions which come to us without our doing
anything; we also perceive while we are being active or moving
about. . .. Each movement we make by which we alter the ap-
pearance of objects should be thought of as an experiment designed
to test whether we have understood correctly the invariant relations
of the phenomena before us, that is, their existence in definite
spatial relations.?

Although Helmholtz said much more than this, here he promoted the
idea of an active organism exploring the invariants of an object
undergoing transformation caused by exploration. That invariants were
important to Helmholtz has not been lost to students of perception,*
but this fact is rarely emphasized.

Gestalt psychologists also used the term. Koffka (1935) mentioned
it in many contexts, although he used it differently than did Helmholtz
and Gibson. Missing was the idea that aspects of the environment are
invariant under transformation. Invariants for Koffka were constancies
without mathematical implication.

Gibson (1967), in the given quote, suggested that this concept nec-
essarily brings forth a new theory of perception. What should be clear,
however, is that this theory is not wholly new. What is new to Gibson
is the full emphasis on invariants and deemphasis on conceptual elab-
oration. Such a view contravenes Helmholtz’s unconscious inference
and Koffka’s discussion of the non-structure-preserving mapping from
distal to proximal stimulus.

In The Perception of the Visual World, Gibson (1950) introduced in-
variance as it influenced his later wotk. 1t is interesting, however, that
he used the concept little there and only in connection with a particular
invariant from projective geometry—the cross ratio, the subject of
chapters 6 through 9 here. It was Boring (1952) who picked the idea
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out of Gibson and emphasized its importance. Boring was strongly
influenced by Stevens's (1951) discussion of invariance as central to
all scientific endeavor.® Gibson then worked hard on the idea (Gibson
1958, Gibson et al. 1955), and the first full-scale treatments appeared
a few years later (Gibson 1959, 1960b). Afterward, although much of
the rest of his theory changed, his discussion of invariants generally
did not. He stuck fairly close to the idea from mathematics that invariants
should be abstract and formless (Gibson 1373b). The question remains,
however: What assumptions are made when this term is used in
perception?

Assumption 1: Mathematics Is an Appropriate Descriptive Language for
Visual Perception

One assumption, broached by Gibson and myriad other students of
perception since Herbart, is that the best descriptors for visual perception
are those of mathematics, This assumption transcends goals of elegance,
formalism, and precision and has its basis in two ideas: The spatial
layout of our visual world is best described by some form of mathematics,
and the human mind is attuned to that description because it is attuned
to the layout. The first idea is as old as Euclid; the second is Galileo’s
mathesis universalis, a Renaissance notion that seems quite modern.
Echoed by Pylyshyn {1972, pp. 547-548), scientists believe that

the secrets of the universe (both physical and psychological) are,
as Galileo said, “written in the language of mathematics.”” But this
must not be misunderstood to mean that it is only accessible to a
mathematician. Even less does it mean that everything of impor-
tance can be measured and subjected to calculation. It means that
those aspects of the universe that are ultimately comprehensible
to the human mind are comprehensible because one can see in
them a structure that is essentially mathematical.

Although Pylyshyn was more concerned with the relation of linguistic
formalisms to language, his statement applies equally to perceptual
theory and perception. Many of us believe that an explanation of the
perception of layout is partly understood through the mathematics of
how things are arrayed before us and how their optics change when
we or they move. Together, then, these twin ideas—that the structure
of the world is mathematical and that this structure is comprehensible
because of its mathematical nature—form an assumptive base for realism
in perception and epistemology. 1t is the promise of tractability in the
mathematics of the optic array that makes realism tenable.
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Nevertheless, to say that mathematics is an appropriate descriptive
language for perception is a global statement. It makes no commitment
to any particular type of mathematics. Thus I know few who would
overtly disagree with this assumption; it is weak. Mathematics is so
varied that it is difficult to believe that this assumption could be false.
Math can be used anywhere; its formalisms can be used without prej-
udice in both astronomy and astrology; it can model equally truth,
trivialism, and falsehood.

Assumption 2: Mathematical Truths Are Transportable into Perception
without Change of Meaning

It is one thing to say that the world and its perception are essentially
mathematical. It is quite another to say that the tools of a particular
branch of mathematics can be safely transported out of a rigorous and
tightly circumseribed domain into an entirely different, less rigorous,
and comparatively disordered domain like visual perception.® Cassirer
(1944, p. 11) noted this when discussing group theory and perception:

The precision of mathematical concepts rests upon their being
confined to a definite sphere. They cannot, without logical prej-
udice, be extended beyond that sphere into other domains.

Cassirer warned us that importation of mathematical ideas into per-
ception can be a problematic course of action. The structure and prob-
lems of a particular branch of mathematics may bear no resemblance
to those of perception. The implication is that if any aspect -of math
and perception is anisomorphic for a particular problem, then application
of mathematics will be misleading.

Cassirer, however, made the strong claim that the principles of in-
variance and groups are the basis of both perception and geometric
thought. In fact, he stated that mathematical and psychological thought
could be brought together under group theory. This claim may be true,
but it is not without question, as I discuss later. What should be clear,
however, is that assumption 2 is stronger and more particular than
assumption 1: A specific kind of mathematics is asked to work for a
specific problem in perception—that of how we perceive constancies
in the world. Thus we must assess whether “invariance”” means the
same thing in mathematics as it has come to mean in perception. To
do this, we need more background on the term’s use in mathematics.

Notes on Invariance, Transformations, and Groups in Mathematics
Invariance is a term born of mid-nineteenth-century mathematical
thought. It was first used by Boole, Cayley, and Sylvester from 1841
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to 1850 in algebra.” As its use developed and spread, invariance came
to mean “anything which is left unaltered by a coordinate transfor-
mation’”” (Thomas 1944, p. 7). Thus, if the three dimensions of a rect-
angular room can be represented in Cartesian coordinates (x, y, and
z), moving a block through that space, changing its coordinates, does
not change its shape; that remains invariant. Later, in the nineteenth
century with the work of Lie and Klein, invariance and transformation
became interlocked. Psychologists have heard most about the early
history of invariance in the context of Klein's Erlangen program of
1872,® which defines a geometry as a system of definitions and theorems
that remain invariant under a given group of transformations.

If invariants are those things in a geometry that are unaltered by
coordinate transformation, we need to know more about them and
how they form a group. The key concept here is group, in its mathe-
matical, but not commonsense, meaning. There are four postulates true
of a group (see Bell 1945 and Stevens 1951):

1. Closure. If 2 and b are members of a set of operations (trans-
formations), then a » b is also a member of the set. (The symbol
» denotes combination.) All members of the group can be
related to all other members; the group is also closed.

2. Associgtion. For any three operations in the set,
(@a=b)»c=ax(b=c). Order in pairwise combination of a string
of operations is irrelevant.

3. [Identity. There is an operation i such that a + { = 4. The group
includes a null operation, called the identity transformation.

4. Inversion, There is an operation a4’ such that 4’ » 4 =i, The
existence of one operation implies its inverse. '

Now consider a small exercise in group theory—what one can do
with a block of wood on a desktop. One can push it to the right
(operation @) and push it backward to the same extent (operation b}.
One could start again and push it diagonally at 45° until it rests in the
same position, a = b. If operation ¢ is turning the block over, one can
move the block diagonally and then turn it over, (2 » b) = ¢; or one can
move it to the right, then move it backward an equal amount while
turning it over, a * (b » ¢). And, of course, one can do nothing, i, and
do the opposite of a, b, and ¢. In addition, if the operations are also
commutative (a fifth postulate), a » b = b » g, then the group is Abelian.
The small group of operations just listed is an Abelian group, although
spatial translations and rotations in general are not.

In Euclidean space, a rigid object like our block of wood can be
moved around without changing its shape. All possible motions {or
transformations) form a continuous group—the “group of displace-
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ments’’ (Poincaré 1905, 1907; Piaget 1970)—that is infinitely dense in
potential operations along its various dimensions. Helmholtz {1894,
p. 504) was the first to try to use this in an account of the perception
of objects in space:

Being acquainted with the material form of an object, we are able
to represent clearly in our minds all the perspective images we
expect to see when we look at it from different sides; and we are
startled if an image we actually see does not correspond to our
expectations, as can happen, for example, when a change in the
form of an object accompanies changes in its position.

Cassirer (1944, 1945) developed this idea in an attempt to coordinate
perception and geometry. It is this coordination, if possible, that le-
gitimizes the importation of the terms “invariance,” “transformation,”
and “group” into perception without changing their mathematical
meaning.

Assumption 3: Mathematical Imports Are Useful in Explaining Perception

It is one thing to import a term from a different discipline, but it is yet
another to make it work for you. As an entrée into this discussion,
consider again Klein’s Erlangen program and its later efficacy within
mathematics: Basically, two things happened: The program ultimately
failed and, where some of its ideas generalized, the results seemed
trivial. With regard to the first, many new geometries did not fit the
program. In particular, the concept of space developed such that its
intrinsic structure generally could not be defined in terms of transfor-
mation groups. But more relevant is the matter of trivialization. The
Erlangen program flourished for a while, and its ideas were applied to
nearly everything imaginable. This brought problems (Bell 1945, p. 446):

The success of the Erlanger Programm was also partly responsible
for another tendency that did mathematics no particular good.
When it was shown that a certain theory satisfied the postulates
of a group, it seems to have been assumed as a matter of course
that the theory was thereby significantly advanced. To cite a trivial
instance, when it is gravely announced that all of the rational
integers form a group with respect to addition, common sense will
not stand open mouthed in dumb admiration, but will demand,
“What of it?”

Like the application of groups to rational integers, any application
of invariance, transformations, and groups to perception may be trivial.
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This is not to denigrate the power of groups per se, as they have
provided powerful insights in other arenas, but only to warn against
the presumed utility of such application. For example, reconsider the
case of moving the block of wood: It is true that everything one can
do with it by moving it around in space does not alter its shape and
that these transformations satisfy the postulates of a group. But it is
not clear that such a fact elucidates a theory of the perception of or
action with that block. Instead, it appears simply to obfuscate the
obvious.

Consider a case in which these concepts do not help. At the heart
of group theory is the null transformation i. When applied to perception,
all possible objects and events are invariant under the null transfor-
mation. But this truth seems empty. To counter this, we might try to
remove the null transformation from the group, stating that we perceive
invariants as revealed under all nonnull transformations. But then we
no longer have a group: Identity and inversion postulates are violated.
Moreover, it is not simply the null transformation that is problematic;
i is completely surrounded by infinitesimal transformations that are
also useless to perception. I return to this idea under assumption 4.
Once the notion of invariants under transformation is applied to per-
ception, it is an empirical matter as to whether it will be useful to
perceptual theory. The link begins as a codification that may be circularly
rooted in geometry and perception (Cassirer 1944), but unless we can
specify why some invariants are used in perception and some are not,
the use of the concepts of group, transformation, and invariance may
offer us little. '

A Note on Overgeneralization of Invariants in Perception

The members of the group are transformations related by the postulates
given earlier. Invariants are one class of entities they operate on. Thus
there are two species of mathematical entities: invariants and trans-
formations. Recently, Shaw and Pittenger (1977) and Michaels and
Carello (1981) called invariants and transformations two varieties of
the same species—invariants. Shaw and Pittenger (1977), for example,
spoke of transformations or symmetry operations as transformational
invariants and what they operate on as symmetries or structural in-
variants. Even though I have suggested a similar distinction,® I think
that the term “transformation invariant” is misleading. My reason is
that if we can make these terms useful to psychology, we ought to do
so without changing their mathematical meaning. Invariants are in-
variant because they survive transformations unchanged. But trans-
formations are not invariant simply because they are unchanged by
the entities on which they operate. In other words, there is an asymmetry
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between the two concepts. Transformations operate on both invariants
and variants and are changed by neither; invariants are operated on
by transformations and remain unchanged, whereas variants are op-
erated on and changed. Another way to look at this, provisionally
accepting application of invariant to an operator, is to suggest that the
term “transformational invariant” is uninformative because there ap-
pears to be no such thing, mathematically, as a “transformational vari-
ant.” Objects, for example, do not operate on transformations such that
they can change them. Pushing a block to the left does not become
pushing it to the right or turning it over as a result of the character of
the block.!® The overgeneralization of the term “invariant” can also be
found in Gibson, as [ discuss under assumption 7.

Assumption 4: Mathematical Invariants Are Absolute and Those for
Perception Are Not

Previously I suggested that the null transformation is not psychologically
useful and that it is not a special case; it is simply the center of a region
of transformations in a continuous group that are so small as to be
undetectable by a perceiver. Thus there is likely to be an indefinitely
large number of transformations of an object too small to reveal any
invariants not revealed under the null transformation. This point was
made implicitly by Luchins and Luchins (1964), explicitly by Hochberg
(1981, 1982), but made earlier by Cassirer (1944, p. 16) in a statemnent
that weakens his argument on the parallel between geometry and
perception:

It goes without saying that this analogy between the formation of
invariants in perception and in geometry ought not to make us
overlook the thoroughgoing differences which are very important
from the epistemological point of view. These differences may be
characterized by an expression which Plato used to define the
opposition of perception to thought. All perception is confined to
the “more or less”. ... Only approximative, not absolute deter-
minations are attainable in perception. This characteristic is also
exhibited by perceptual constancy. Its realization is never ideally
complete, but always remains within certain limits. The fixation
of these limits constitutes one of the most important tasks of psy-
chological research. Beyond these limits there is no further
“transformation.”

The anisomorphism between group theory and perception, then, is
that in mathematics all transformations reveal invariants, whereas in
perception only sufficiently large ones do. This latter idea is the crux
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of the experiments and discussion in later chapters. Without acknowl-
edgment of threshold considerations, a theory of perception based on
invariants is simply a stimulus theory without necessary relevance to
the organism." This is much more than a quibble. We must not assume
that we are simply dealing with necessarily minute changes in optic
flux, Threshold determination for perceptual invariants is an empirical
matter, and some thresholds may be so high as to render questionable
an invariant’s use at all.

A Note on Invariants in Pictures

One of the most puzzling applications of the concept of invariants can
be found in Gibson's (1979, p. 271) account of picture perception. He
suggested that a picture is

an array of persisting invariants of structure that are nameless and
formless. ... Ordinarily, these invariants underlie transformations
and emerge most clearly when the persisting properties separate
off from the changing properties; but they can also be distinguished
in the limiting case of an unchanging structure.

Pictures are putatively full of invariants that continually undergo the
null transformation. Although such a statement may make mathematical
sense, logically it makes none. As Arnheim (1979, p. 122) pleaded:
“The notion of invariance loses its meaning where nothing variable
can exist.”""* By the logic outlined, invariants that undergo no perceptible
transformation in time cannot be revealed to the perceiver at all. Variants
and invariants alike are unchanged by the null transformation. Thus
in a frozen picture it is not clear how the structure of the virtual world -
is apprehended. It is possible that transformations in virtual space can
be registered, but as gradients, not as invariants. More is said about
this in the discussion of assumption 7.

Eirst Qverview

In this first section [ have tried to explicate four assumptions underlying
the application of invariance to perception. In essence, I have considered
whether invariance has survived importation into psychology, whether
importation has forced a change in its meaning, and whether it is a
useful citizen. I believe that the first assumption is valid, perhaps only
because it is almost completely nonrestrictive: Mathematics is an ap-
propriate descriptive language for perception if only because its for-
malisms can take on a nearly infinite variety of forms.

I believe that the second and third assumptions are valid if one is
careful. Certain mathematical truths are transportable into perception
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without loss of meaning, and they can be useful to us. If these as-
sumptions are to remain valid, however, psychologists must guard
against contamination of the transplanted idea. Careful specification
of invariants can help retain the rigor of the term, and wariness about
overgeneralizations can keep it from differentiating beyond recognition.
The term “invariant,” and the term ‘‘transformation’ as well, I believe,
should take hold and grow in perception, but these terms do not guar-
antee that the term “group” will be useful just because it belongs to
the same alien family. Group theory, I believe, is not easily applied to
perception as more than an empty formalism."

And I believe the fourth assumption to be true: Because of the “more
or less” of perception, perceptual invariants cannot be absolute. This
fact skews the parallel between geometry and perception and suggests
that invariance may not always be able to do the yeomanly work in
perception that some of us want. At best, invariants work for perceivers
only some of the time, and the determination of how well they work
for psychologists is an empirical question. Consider next three as-
sumptions about invariants and sources of information. Like the four
that went before, these are statements [ believe are true.

Assumption 5: An Invariant Is Information, Not an Object Property

Invariance as applied to perception has meant at least two things. The
one I wish to concentrate on is information in the sense of the chapter’s
first quotation: “Invariants correspond to the permanent properties of
the environment” (Gibson 1967, p. 162, my emphasis). The other sense,
and the one I think problematic for perceptual theory, is invariance as
an object property. This idea seems to have come from the gestalt
psychologists (Koffka 1935, Heider and Simmel 1944). Consider two
examples.

First, Gibson (1966, p. 8) suggested that “the earth ‘below’, the air
‘above’ " were simple invariants. But they are not; they are permanent
features of the layout. They do not correspond to properties of the
environment; they are its properties. They are not information; they
are substances. Helmholtz (1878a, p. 387) was clearest separating the
two:

That which, independently of any and everything else, remains
the same during all temporal changes, we call a substance; the
invariant relation between variable but related quantities we call
a law. We perceive only the latter directly.

Second, consider a flat surface, That surface may be invariably flat;
flatness can be said to be its invariant. Although I do not wish to
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impugn either constancies or perceived properties, a problem arises as
to how we are to account for the perception of this surface. In ecological
optics we typically assume that the information (the invariant) specifies
the object or event perceived; that is, we pick up (process) the invariant
and as a result perceive the object properties specified. But here we
must be extremely careful. It is illegitimate to say that we can perceive
a flat surface because it is invariably flat. This is the fallacy of assuming
the consequence: The explanandum (that which is explained) is the same
as the explanans (the means by which the explanation occurs). To state
that flatness specifies the perception of a flat surface is to use a logic
that runs in circles. Unfortunately, Gibson (1979, p. 271} slipped into
this tautology. For example, he noted:

When the young child sees the family cat at play the front view,
side view, rear view, top view, and so on are not seen, and what
gets perceived is the invariant cat. ... It is not that he sees an
abstract cat, or a conceptual cat, or the common features of the
class of cats, as some philosophers would have us believe; what
he gets is the information for the persistence of that peculiar, furry,
mobile layout of surfaces.

This is loose logic. If invariants are information, a cat is a cat and
not an invariant. There may be some mathematically specifiable in-
formation that specifies a particular cat, but it is not the'cat itself, The
information about an object or event cannot be of the same form as
its perceived properties. Invariants in theory and in perception must
be formless—they cannot be shapes or geometric figures.

My approach is hard nosed, and my goal is to explore specific, formless
invariant relations that specify flatness and rigidity and observer di-
rection. I investigate flatness and rigidity in chapters 6 through 9 and
observer direction in chapters 12 and 13. The information, to be formless
in the physical sense, is couched in terms of mathematical expressions.
Such invariants are often proposed for perception but less often stated
with precision." The general dearth of known perceptual invariants is
recognized as a problem even by the staunchest proponents of ecological
optics. For example, Neisser (1977, p. 24) said:

In Gibson’s view some characteristic must be invariant over time,
to specify the unvarying shape of the real object.

Unfortunately, these crucial invariants have not yet been isolated.
The claim that they exist is the largest outstanding promissory
note in ecological optics.
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Assumption 6: Invariance Does Not Entail One-to-One Mapping
between Information and Object

Fundamentally, invariance is about mapping. Following Palmer (1978)
the mapping is between a representing set of relations and a represented
set. For my purposes the representing set is the geometric relations
measured in the optic array, and the represented set is the distances
among objects and object parts in the world. In visual perception
invariance maps any token of relations in the image set back to a single
token of the real-world set. The mapping remains true even when
accompanied by transformations of the object, caused by the object’s
motion or the observer’s movement, But notice, I make no claim about
the reverse mapping from real world to proximal image. I claim the
real world entails a many-to-one mapping from information to objects
but not a one-to-one mapping. The main purpose of this book is to explore
this difference.

In direct perception it is often said that an invariant specifies the
object or event perceived. That is, information is associated with one
particular object or event, or a coherent class of them, and none other.
Likewise it is often assumed—and the quote by Neisser stated this——
that for every object or event there is one and only one invariant, Like
Neisser, Eleanor Gibson (1967, p. 464) has alsoc made this assumption:

The search for an invariant—the relation that remains constant
over change—is the essence of object perception. The stimulus
invariant that keeps its identity despite the transformations of stim-
ulation caused by motion of the object or a movement of the
observer is the basis for perception of that object.

And James Gibson (1966) also made it. He discussed the relation among
environmental source, stimulus invariant, and percept. The first two
are related by physical law and the second two by psychological res-
onance. One-to-one mappings are implied at each juncture.’” Similarly,
Gibson (1967, p. 166) said:

How can the child separate the variants caused by external events
from the variants caused by his bodily movements? How can he
know that the whole world has not moved, for example, whenever
he moves his eyes? This is an old and controversial question in
psychology. A possible answer is, by extracting a still higher order
of invariant. The uncentrollable variation, the one that cannot be
reversed by reversing an exploratory movement, is information for
an external event just as the invariant that remains after a con-
trollable variation is information for an external object,
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It is clear in these quotations, and generally throughout the body of
literature on direct percepticn, that there is an assumed one-to-one
mapping between invariant and object.'® But such a mapping, attractive
as it appears, cannot generally hold.

Assumption 7: Gradients Are Not Typically Invariants

Many descriptions of surfaces and of optic flow deal with gradients.
This term was first used in visual perception by Koffka (1935, p. 248),
who suggested that “the qualities of perceived objects depend upon
gradients of stimulation.”” Gibson (1947, 1950) picked up this idea, and
gradients have since been explored by many."” They are measures made
on a projection surface of the stochastically regular properties of the
environment. Gradients grade, or change, as objects project from dif-
ferent regions of the optic array and, most typically, as one traces them
out from one’s feet up to the horizon.

The link between invariants and gradients has been made, but not
always with care. This has led some critics to suggest that it is too.
vague to be useful. Topper (1979, p. 136), for example, pleaded that
Gibson “should be more precise in defining what are and what are
not invariants,” Ullman (1979, p. 378) quoted Gibson (1972, p. 221),
noting that

the definition of invariances in the theory of direct perception is
in fact so broad that almost any rule, once discerned, can be re-
formulated in terms of invariances: “A great many properties of
the optic array are lawfully or regularly variant with change of
observation point, and this means that in each case a property
defined by the law is invariant.”

And Gibson (1979, p. 272) further argued that

the gradient of size and the gradient of density of texture are
invariants; the horizon considered as the line where sizes and
textures diminish to zero is an invariant. There are many kinds of
invariants.

Gibson’s statements here, I believe, are off the mark. Unfortunately,
many of us have slipped into this error.'® Let me explain why it is
wrong.

Perceptual invariants denote a constant mapping between the rep-
resenting domain (information about the world in the optic array) and
the represented domain (the physical world). For an invariant to warrant
the name, it must not depend on the spatial relation of the object to



74 Information for Vision

the perceiver, That is, coordinate change of the viewer or of the object
should not change the information. If information varies with viewer
or object position, as it does in a gradient for any nonplanar surface,
that information is not invariant. To pursue this a little, let me note
that Gibson suggested that the property the variant specifies—the layout
of the surface—-can be invariant across changing points of observation.
There are, as I see it, two problems with this analysis. The first, as
suggested by Ullman, is the vagueness of the concepts of “lawfulness”
and “regularity” in variants, What are the laws? What kind of regularity
qualifies? Second, this analysis is a retreat from the notion of invariants
specifying objects or events. Instead, the variants (gradients) specify
the invariant property that is perceived. Thus the variants are said to
specify the object, and the invariant, rather than being the information
that specifies the object, is the property of the object perceived. What
is needed for a theoretical account of perception is an invariant that
specifies both the gradients and the object perceived. One such entity
is considered in chapter 9.

Second Overview

The last three assumptions dealt with how the term “invariant”” should
be used as an explanatory device in perception. All, I believe, are true,
but opposite claims have been made. The fifth assumption is that the
term should be reserved for discussion of information and not include
the constancies of objects or object properties. The rationale is twofold:
If invariants are formless, they cannot also be object properties, and if
perception is to be explained nontautologically, we should not try to
explain what is perceived by means of the pickup of what is perceived.

The sixth assumption concerns the mapping between information
and objects, This point may appear abstruse at present, but I hope the
next eight chapters make it clearer. Briefly, however, we should rec-
ognize the following possibility: Two sources of information can specify
the same object or object property and yet not be the same—not even
notational variants of one another. In forecast of how multiple speci-
fication can occur, let me say that if information is the combination of
relations among optic elements, combinatorics can be quite different,
even though the base elements are the same.

Finally, the seventh assumption is that gradients are not invariants.
I suggest this first merely on the basis of semantic analysis. Gradients,
if anything, must be variants; invariants, if anything, cannot grade. But
the rationale for this separation is deeper: Gradients for all nonflat
surfaces do not survive unchanged the transformations of observer
position. I assume further that an invariant can underlie some gradients
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and that the information used in perception may often be the invariant
rather than the gradient.

All these assumptions are about the class of entities called invariants.
It is almost time to consider a particular one—the cross ratio. Before
that, however, let me define the class,

A Definition of a Perceptual Invariant

Throughout this work I use the word “invariant” as a noun, not an
adjective. As a noun it is a source of information about an object or
event that remains constant during transformation; as an adjective it
simply connotes constancy.

I suggest that a perceptual invariant must be mathematically spe-
cifiable in one of two forms-—as a real number or as an ordered relation
among reals." In the first case that number may be dimensionless, one
formed by a ratio with numerator and denominator measured in the
same units, which cancel. The invariant considered in chapters 6, 7,
and 9 is one such number. In the second case, inequalities or rankings
can be considered. In later chapters this is explored in optic flow: in
chapter 9 as a uniformity (or lack of ordering) and in chapters 12 and
13 as a set of inequalities. Reduction to numbers is a strong check on
invariance. [ claim that if such numbers are not equal or orderings not
constant, invariance is not present,

To be an optic invariant, all information about an object or event
must be present in the optic array, measurable at a particular place
and time, and valid at all places and times. Thus the invariant is a
constant mapping from the proximal image and distal stimulus, where
relations between image (or eye) and stimulus are not fixed. More
simply, all perceptual invariants for vision are projective.

Finally and most important, an invariant is not perceptual unless it
is demonstrated that the observer can use the information in a perceptual
task.
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Competing Invariants of Configuration and Flow

In the geometry specifying perspective transformations, i.e. projective ge-
ometry, metrics has no meaning. Instead certain relations, the so-called
projective properties, which remain invariant under perspective transfor-
mations of a figure, are abstracted. One example [of] such an invariance
under form change is the cross ratio. . ..

Johansson et al. (1980, p. 31)
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Cross Ratios

In chapters 1 and 5 | suggested that the lawfulness of visual perception
is due, in part, to invariants. In chapter 4 I suggested that this source
might be projective geometry. One rationale for assuming that projective
geometry is fundamental to vision was given by Poincaré (1905, p. 49):

The properties of light and its propagation in a straight line have
also given rise to some of the propositions of geometry, and in
particular to those of projective geometry, so that ... one would
be tempted to say that metrical geometry is the study of solids,
and projective geometry that of light.

If information for perception is in the light, then invariants may be in
projective geometry.

What is needed, of course, is a concrete example. Here, I investigate
the cross ratio. My goals are modest. I do not suggest that the use of
the cross ratio in perception solves fundamental and sweeping epis-
temological problems. It is merely one example, perhaps not even a
prototypical one, that can be used to promote realism as a perspective
in perception and epistemology. One invariant is not enough on which
to build a theory. But one is better than none, and this one is among
what I believe to be a large number that can be investigated; vision
researchers have already begun to look at a few of these invariants.
They are trustworthy sources of information, underlying Riviére’s
vicissitudes of lighting, position, and time.

The rationale for choice of the cross ratio is fourfold. First, it has the
distinct advantage of being an invariant in mathematics based on an
important theorem, In a straightforward way, this fact allows me to
apply the concept of invariance to perceptual situations. No one can
quibble as to whether or not the cross ratio is an invariant. Second,
the cross ratio has face validity when applied to a perceptual problem:
It is about straight lines and easily generalizes to planar surfaces—
both of which are found in our perceptual environment. Third, although
Gibson (1950) and Johansson et al. (1980) suggested that the cross ratio
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object

Alberti's window

Figure 6.1

Agschematic display of the cross ratio. Four elements are on a line L,, point X is an
element not on L,, and all elements are connected to X, creating line segments AX, BX,
CX, and DX. Line L, passes through these segments (or their extensions in either direction).
When segment lengths are placed in ratio form, they create an invariant mapping from
L, to L,.

might be useful to perception, neither provided data in its support.
E.]. Gibson et al. (1978) and Simpson (1983) also discussed this ratio,
but again neither provided a direct test of its efficacy. Fourth, the cross
ratio addresses, somewhat obliquely, issues of processing. Many regard
the registration of invartants as a view that simplifies perceptual process.
Ullman (1980, p. 380), for example, argued that

if processing is trivial or nonexistent, then one is led to search
“immediately registerable” information, such as the simple cross-
ratio in the perception of three-dimensional structure in motion.

Although Ullman would disapprove, this research is such a search.
With my rationale in place, consider next a description of the properties
of the cross ratio.

The Canonical Cross Ratio

The cross ratio concerns the polar (or as a special case, the parallel)
projection of four collinear points. Consider the situation in figure 6.1.
Let A, B, C, and D be four points on the same straight line, L,. Let X
be a point not on that line, and connect all points to X. This creates
the new lines of which AX, BX, CX, and DX are segments. Let line L,
intersect these new lines at points A’, B’, C’, and D’. Projective geometry
tells us that the cross ratios of segments bounded by the points ABCD
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and A’B’C’DY are the same. In particular, the following segment lengths
form the following equal ratios:

(AD-BC)/{(AC-BD) = (A'D’-B'C’) /(A'C'-B'D'). (6.1)

This cross ratio—the product of the longest segment (AD) and the inner
segment (BC), divided by the product of the segments connecting non-
adjacent exterior and interior pairs of points (AC and BD)—is invariant
under any projection to any point not aligned with A through D. Stated
in another way, its value does not change, regardless of the location
of point X or of the orientations of lines L, or L,, so long as X is on
neither line, :

As it turns out, there are many ways to permute segment relations
among the points A, B, C, D on line L,. Given four elements and four
places within a ratio, there are 24 different cross ratios, 6 of which are
numerically different. All these are invariant under rotation and dis-
placement of line L,, change of position of line L,, or movement of
point X. Following most mathematical discussions, 1 consider the cross
ratio given in Eq. (6.1) to be the canonical form and use it throughout
the next chapters. After proving its invariance and showing some of
its properties, 1 return to the other five cross ratios.

Two Proofs of Cross Ratic Invariance
Proof of cross ratio invariance is typically given in vector algebra (see,
for example, Gellert et al. 1977 and Seidenberg 1962). The two proofs
[ present here, however, are given in trigonometry, adapted from Ayres
(1967). The desirability of two proofs stems from the different aspects
of the cross ratio that are seen as important. What has been of most
interest to mathematicians is proof that the relations of segments AC,
AD, BC, and BD are invariant on each possible projective line (all L,’s),
what 1 call the projected-segments proof. Vector algebra is well suited
to it. Of the most interest in vision, however, is the invariance of the
optic angles subtending those segments as one moves around an object
or as the object changes position. 1 call this the projected-angles proof.
Schematic layouts for both proofs are shown in figure 6.2. The im-
portance of the projected-angles proof is that, when considering angles
rather than segments, the shape of the projection surface becomes
irrelevant. Thus the projection surface can be a plane, as in a movie
theater, or a curved surface, such as the retina or the cornea of the eye.
Presentation of the proofs entails three steps. First, 1 define the cross
ratio (AD-BC)/(AC-BD) in terms of the three angles o, 8, and v that
subtend the lengths AB, BC, and CD, respectively. These are shown in
the top half of figure 6.2. This step is necessary for the two that follow.
Second, | define the cross ratio (A'DY-B'C") /(A’C’ - B’D'} in terms of those
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projected-segments proof

Figure 6.2

Two schematic displays for the proof of invariance in the cross ratio. The projected-
segments proof shows the arrangement for different projection lines, the proof usually
given in projective geometry; and the projected-angles proof shows the arrangement for
different station points or changes in the orientation of the object, the situation relevant
to these studies and to visual perception generally.

same angles. Thus, given that both quadruples yield the same cross
ratio of angles, the situation shown in figure 6.1 and in the top half
of figure 6.2 is proven. Third, I preserve the original segment lengths,
but move the station point to X’, thus creating three new angles o/, 5/,
and v'. Given that this new arrangement of angles has the same form
as the old, the situation shown in the bottom half of figure 6.2 is also
proven.

Step 1: Conversion to Cross Ratio of Angles.  As before, collinear ele-
ments A through D are connected to a noncollinear element X. In
addition, however, a perpendicular from X is dropped to line L,, in-
tersecting it at point H. This point will prove useful later. Alse, the
three important angles are drawn: « subtending segment AB, § sub-
tending BC, and v subtending CD. The cross ratio (AD-BC)/{AC-BD)
can be rearranged as the division of two ratios, AD/AC by BD/BC. At
this point we can set up some proportions, multiplying each segment
by a constant, 0.5-HX. It happens that 0.5-HX times each segment is
equal to the area of each triangle formed with the station point. Thus
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the original cross ratio of line segments is equal to a cross ratio of
triangular areas. This set of substitutions can be shown as

AD 0.5-HX-AD area of AAXD

AC 0.5-HX-AC area of AAXC

BD 0.5-HX BD area of ABXD

BC 0.5-HX-BC area of ABXC

Now we can express the area of each triangle as a function of com-
ponent side lengths and the angle that subtends the original length on
L,. Or we can consider the area of each triangle as half the area of a
parallelogram, also shown in the top panel of figure 6.2. Its area is the
product of the length of adjacent sides times the sine of the angle
between them. Thus the relations shown above are expanded and then
simplified as

0.5-AX-DX-sin(fe + 8 + 7) sinfa + 8+ )

0.5-AX-CX'siffw+8) sin{fa+f)
05-BX-DX-sin(8+1v) = sin(8+7)
0.5-BX-CX-sin{3) sin(§)

Rewriting the last expression by reinverting the ratio in the denominator
yields a cross ratio of angles:

[sinfe + 8 + 7)-sin(8)]/[sin(e + B)-sin(8 + ¥)]. (6.2)

Step 2: Conversion to Same Angles from Different Segments.  The second
step is to convert to these same angles from different line segments,
those on line L, labeled A’ through D’. Notice that a new perpendicutar
from X is dropped to L,, intersecting it at H’. Now it should be obvious
that the eventual cross ratio of these angles should be the same as in
the previous step, as exactly the same angles are involved. But what
is not 80 obvious is that these second line segments should be able to
achieve the same goal. If they can, then their cross ratio is the same
as that for L,. The proof begins in the same manner, where the expression
(A’'D’-B'C")/(A’C’-B’D") is broken into two ratios and substitution of
areas of triangles is mader

ADY 05 XH-AD 05-AX-D'X-sin{fa + 8+ )
AC’  05-XH-AC _ 05-AX-CX-sinfa + §)
BD'  05-XH-BD  05-BX-D'X-sin{ + v)
B'C’ 0.5-XH'-B'C’ 0.5-B’X-C'X -sin(8)
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In the right-hand side of these equations, as before, all the segment
lengths of rays from point X and all values of 0.5 cancel, leaving

[sin(e + 8 + 7)-sin(8)]/[sin{a + 8)-sin(8 + 7)]. (6.3)

Notice that the ratio given in expression (6.3) is identical with expression
(6.2), proving that

(AD-BD)/(AC-BD) = (A'D’-B'C")/(A'C’-B'D').

Step 3: Conversion to Different Angles from Same Segments.  This final
step is most important. Here, a new station point is chosen, X, Points
A through D are then connected to X’, and the perpendicular to L,
dropped from X’ intersects L, at H”. We start with the same cross ratio
as in step 1, (AD/AC)/(BD/BC), and expand it into areas of triangles,
then parallelograms:

AD 0.5-X’H”-AD 0.5-AX’-DX’-sin(a’ + 8" + 7¥')

AC  05-X'H”-AC _ 0.5-AX’-CX''sin( + 8

BD  0.5-X’H”-BD 0.5-BX’-DX'-sin(8’ + v)

BC  05-X’H”-BC 0.5-BX’-CX’-sin(3")

Simplifying and rearranging the rightmost expression yields
| [sin(e + 8 + ¥) sin(@)/[sin(e’ + 8)-sin(3 + v)]. (6.4)

Because the leftmost expressions in steps 1 and 3 are identical, the
expressions given in expressions (6.2) and (6.4) are identical in value.
Thus the cross ratio of angles at station points X and X’ is the same
and will be invariant for any station point not on line L,.

A Reflection on These Proofs

Cross ratio invariance at all possible cross sections of the optic array
is, in part, formal proof of the multiplicity of possible layouts for any
given static optic array. The Ames demonstrations discussed in chap-
ter 4 are specific examples of how such layouts can present the same
optic array, and many psychologists have taken this fact as prototypic
of how perception is underdetermined by stimulation.! This is unfor-
tunate because it emphasizes the wrong facts. Indeed, the cross ratio
(and most likely other information as well) is invariant at all cross
sections of the same optic array, but it is also invariant across all cross
sections of all optic arrays containing arrangements of collinear elements
A, B, C, D. Thus, rather than demonstrating the inadequacy of stimulus
information for a static view, the cross ratio demonstrates the adequacy
of stimulus information in a series of static views or across time in a
continuously changing view. ' '
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To understand how I test for the perceptual efficacy of the cross
ratio, I must demonstrate how its properties change with variations in
positions of the four elements. These are beyond (or perhaps beneath)
the projective mathematics found in any text, but I use them in the
experiments that follow.

Properties of the Canonical Cross Ratio

It is helpful to begin consideration of the canonical cross ratio with
equally spaced elements. The invariance of the cross ratio is not confined
to equidistant points, but these serve as a simple beginning. Consider
the top panel of figure 6,3. The cross ratio of these elements is 0.75.
If one of the four elements is displaced and the other three left un-
changed, the cross ratio changes. What is important is the amount of
change in the cross ratio when each of the elements A through D is
displaced an equal amount in either direction along the line. If elements
are spaced one unit apart, then all the changes in figure 6.3 involve
left or right shifts of one-third unit.

Notice first the effects of shifts in point A. These displacements change.
the cross ratio by differing amounts: When point A is displaced to the
left by 0.33 unit, the cross ratio decreases to 0.71, an absolute change
of 0.04. This decrease in due to the proportionally greater increase in
segment length AC in the denominator than in AD in the numerator,
On the other hand, when point A is moved to the right by the same
amount, the cross ratio increases to 0.80, an absolute change of 0.05.
This increase is caused by the greater proportional decrease in AC than
in AD. Because proportional decreases for rightward change in point
A are greater than those for leftward change, absolute change in the
cross ratio in the former case is somewhat greater.

Consider second the shifts of point B. Again, changes in the cross
ratio are different according to direction, but they are also much greater
than for point A. A rightward shift of 0.33 unit increases the cross ratio
to 0.86, an absolute change of 0.11; and leftward shift decreases it to
0.60, a change of 0.15. The increase in cross ratio in the leftward case
is due to the proportionately greater increase in BC than in BD, and,
similarly, the decrease in cross ratio in the rightward case is due to the
respective decreases in BC and BD, The greater absolute change in the
cross ratio with rightward displacement stems from the greater pro-
portional decreases rather than increases in segment lengths.

As seen in figure 6.3, changes in C and D are the same as those in
B and A, because the elements are symmetrically arranged. Notice that
equal changes involving interior elements B and C alter the cross ratio
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Figure 6.3

The effects on the canonical cross ratio of moving each of the four elements A, B, C, D
an equal amount in either direction.
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roughly three times more than do changes in the exterior elements A
and D. With unevenly spaced elements the same general pattern recurs.

Other facts about this cross ratio are also important. lts range varies
from 0.00 to 1.00, provided that ordinal exchange of elements is not
allowed, for example, ACBD or BACD. Lowest values occur when B
and C are close together. At the limit, if B and C are at the same location,
line segment BC is zero, the numerator zero, and the overall value zero.
The highest values occur when A and B are close together, C and D
close together, or both. At the limit, when A and B are in the same
locations, (AD-BC)/{AC-BD) reduces to (AD-AC)/(AC-AD), or 1.00. In
addition, the values of this cross ratio are not normally distributed:
Equal distribution of the four elements yields a value of 0.75, which
is the mode of all possible cross ratios. Cross ratios of 0.75 can also
occur when elements are not equally distributed.

Finally, consider a situation complementary to that of figure 6.3. In
figure 6.4, rather than showing equal displacements and unequal
changes in cross ratio, I show unequal displacements that generate
equal changes in cross ratio. For comparison’s sake, the four elements
are again equidistant before any is moved. Arbitrarily I have chosen
absolute changes of 0.06. This is a value in the upper range used in
the experiments to follow, but any value yields the same pattern so
long as it is not too extreme. Increases in cross ratio are thus limited
in the figure to 0.81, decreases to 0.69. These changes are indexed by
displacement of each element needed to generate the new cross ratio.
Normalized to the smallest displacement in the group, which is set to
unity, the changes present a pattern complementary to that of figure
6.3. The leftward displacement of A necessary to alter the cross ratio
0.06 is 4.3 units; rightward change, 2.6 units. The leftward change in
B necessary to alter the cross ratio by 0.06 is 1.2, and the rightward
change is the smallest and therefore 1.0. A symmetric pattern is seen
for C and D. Qverall, the displacements necessary for A and D are
roughly three times those for B and C.

Other Cross Ratios

The canonical cross ratio is not alone, All possible projective segments
can be included in these measures—not only AD, BC, AC, and BD, but
also AB and CD. Thus there are six numerically different cross ratios,
given in table 6.1. The canonical cross ratio is listed first and has several
desirable characteristics. One not shared by the others is that its range
is constrained between ( and 1. All others become infinite as segment
length AB, BC, or CD goes to zero. This is unfortunate because many
of the stimuli that I use have small segments that could cause extremely
large changes in cross ratio. Another property of the canonical cross
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Figure 6.4
The complement of figure 6.3. Here, holding the change in cross ratio fixed determines
the displacement of particular elements.
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Table 6.1
Six Classes of Cross Ratios

Value for  Change with Change with

‘even interior exterior
Cross ratio Range distribution shift shift
1. (AD-BC)/(AC-BD) 0.0-1.0 0.75 0.13 0.04
2, (AC-BD}/(AD-BC) 1.0-00- 1.33 0.25 0.07
3. (AD-BC)/(AB-CD) 0.0-co0  3.00 2.24 0.49
4. (AB-CD)/(AD-BC) 0.0-co 033 0.25 0.07
5. (AC-BD)/(AB-CD) 0.0-00. 4.00 0.68 0.68
6. (AB-CD)/(AC-BD; 0.0-c0 0.25 0.04 0.04

ratio, shared with those numbered 2 through 4, is that changes in the
position of interior elements change the cross ratio more than those
for exterior elements. This is a good feature, not only for interpretation
of the data, but also for methodolegical reasons as well. Cross ratios
5 and 6 do not discriminate between the two hypotheses to be discussed,
in which change in the cross ratio is pitted against change in position .
of a single element.

There is a problem with the selection of the canonical cross ratio
over the others. Why should it be perceptually important and the others
not? A priori, of course, there is no real reason to choose it. I have
temporarily eliminated all others because of their undelimited ranges,
but I consider them again in chapter 8. Range considerations are in-
dependent of invariance; they are basically an aesthetic concern.

Two Hypotheses

Suppose that elements A through D are parallel lines placed on a
transparent plane. Suppose further that the plane is set in motion, with
two types of motion present—rotation or translation of the entire plane
(primary motion) and, nested within it, a smooth lateral displacement
of one line, oscillating back and forth (secondary motion) as the plane
rotates. The question is, ther, when secondary motion is relatively
small, is an observer’s ability to detect nonrigidity in the planar object
governed by the element’s displacement or by the amount of change
in the cross ratio that it creates?*

Figure 6.5 shows competing pairs of predictions from complementary
hypotheses. The horizontal axis indicates which of the four elements
is displaced; the vertical axis indicates performance at detecting non-
rigidity in the stimulus. The left-hand panels portray potential outcomes
of one condition of interest, where the size of displacement is the same
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Figure 6.5

Two alternative hypotheses concerning the perception of dynamic displays consisting
of four elements moving uniformly (primary motion), but with one having an additional
component of motion (secondary motion). In the left-hand panels are predictions from
the stimulus changes shown in figure 6.3, and in the right-hand panels are the predictions
from the stimulus changes in figure 6.4.
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no matter which element is moved (as in figure 6.3), and the right-
hand panels show a second condition, where all cross ratio changes
are held constant (as in figure 6.4). The upper panels portray results
predicted on the basis of what I call the displacement hypothesis. Tt
assumes that the perceiver can detect only the magnitude of change
in position of a single element. Throughout, I call the displacement of
the rigidity-violating element a nonrelational cue. The lower panels
depict outcomes from what I call the cross ratio hypothesis. It assumes
that the perceiver picks up the magnitude of cross ratio change but is
otherwise insensitive to the changes in single-element positions.

Predictions are straightforward. If the displacement hypothesis is
true, then under the condition that equal displacements occur across
elements, detection of nonrigidity ought to be uniform across them.
Using a staircase procedure (Cornsweet 1962), where trial difficulty is
varied by block, we can set the overall performance level at approxi-
mately 75%. But when cross ratios are varied uniformly within a block,
performance ought to be better when A or D have secondary motion
rather than when B or C move, If, on the other hand, the cross ratio
hypothesis is true, a different pattern of results ought to emerge, Under
a condition that varies displacement equally within a block, secondary
motions of B and C ought to be detected more easily than those of A
and D precisely because they change the cross ratio more. And in a
complementary fashion, a condition that produces equal changes in
cross ratio, regardless of the position of the element, ought to yield
equal performance across positions.

Two good features arise out of this design. First, the hypotheses and
the conditions are dually complementary: The condition that tests the
null hypothesis under one theoretical position tests the experimental
hypothesis under the other. If the results are tractable, I am not limited
to accepting the validity of the nuil hypothesis when possible competing
hypotheses might make nearly the same prediction. If some third hy-
pothesis is tenable, then it must make a set of predictions different
from these. Second, the two theoretical positions—the displacement
hypothesis and the cross ratio hypothesis—are ones that pit a local,
nonrelational cue (discussed in chapter 3) for nonrigidity against a
global invariant (discussed in chapter 5). Thus this procedure provides
a test for the efficacy of projective geometry and invariants in the
perception of rigidity and nonrigidity.

Four Cases for the Cross Ratio: A Preview of Experiments 1 through 8

In figure 6.6, four cases are presented in exploration of the possible
utility and generality of the cross ratio for perception. Case 1 presents
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Case 1: Rotating object
top view

Case 2: Toppling object
side view

Figure 6.6

Four cases in which the cross ratio could be used to determine the rigid flatness of a
moving plane. Case 1 shows four points on a rotating object seen from a stationary
viewpoint. Case 2 shows four points on a toppling object seen from a stationary viewpoint.
Case 3 shows four points on a surface of support from a translating viewpoint. Case 4
shows a circling object that keeps its face oriented toward a stationary viewer,
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Case 3: Flowing surface of support
side view

Case 4: Circling object
top view
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four parallel lines on a plane that rotate around a central axis. Viewed
from the fixed station peint indicated, or from any point at all, the
cross ratio of elements A, B, C, D remains the same throughout their
rotation. Thus, if viewers can perceive the rigid flatness of a rotating
plane, it might serve as information on which that judgment is made.
Case 2 presents four parallel lines on a plane that topple away from
the viewer, much like the rungs of a ladder that is falling down. Again,
if rigid flatness of the toppling object can be discerned, the information
used may be the cross ratio. Case 3 presents four coplanar parallel
lines located on a surface of support with the observer moving over
them, and case 4 presents the same four lines on a circularly translating
plane in front of a stationary observer. Again, in these cases the cross
ratio could be used to make rigid planarity judgments. In the course
of discussing the experiments, rotating, toppling, flowing, and circling
are called primary motion.

Eight experiments were designed to explore viewers’ ability to dis-
criminate presence or absence of secondary motion within each of four
primary motion cases, Experiments 1, 2, 4, 5, and 6 concern case 1,
experiment 3 considers case 2, experiment 7 explores case 3, and ex-
periment 8 investigates case 4. The first four experiments are discussed
in chapter 7, the next two in chapter 8, and the final two in chapter 9.7

All stimuli were computer generated and shown on a computer-
driven display. In each case the stimuli had four coplanar, randomly
spaced parallel lines. In case 1 these lines appeared in vertical orientation,
and the plane rotated in depth around a vertical axis. In case 2 the
four lines were horizontally oriented, like rungs on a ladder that is
toppling, falling away from the viewer in depth along the z axis. In
case 3 these lines were again horizontal, like markers on the floor of
a dark hallway as the viewer approaches and then recedes from them.
In case 4 the lines were like those of case 1, but they traversed a circular
path. Thus in case 1 the primary motion was rotation through 360°
around a central vertical axis, in case 2 it was rotation through a pro-
jectively specified 90° around a peripheral horizontal axis, and in cases 3
and 4 it was translation plus expansion and compression for contin-
uously changing observer to object relations.

Secondary motion, if present on a given trial, could always be thought
of as independent motion within a moving plane. Half of all stimuli
displayed only primary motion. They were rigid and maintained a
constant cross ratio for the duration of the trial. The other half displayed
both primary motion of all elements and secondary motion of one.
These were nonrigid and varied in cross ratio throughout. Observers
were encouraged to scan displays thoroughly. All stimuli were generated
in polar projection for an optically specified station point. All subtended

Cross Ratios 95

about 8° of visual angle in both horizontal and vertical directions.
Different sets of observers participated in each experiment.* Eye move-
ments and head movements were not restrained in any way. The testing
room was moderately lit, and the surface and edges of the display
screen could be clearly seen.

Ouverview

The cross ratio is an invariant from projective geometry that might be
used in the visual perception of moving surfaces. In this chapter I
proved the invariance of cross ratios and sketched their application to
four perceptual situations: rotating and toppling surfaces, surfaces that
might support a locomoting observer, and a circling surface. I also
considered the properties of the canonical cross ratio and five other
cross ratios. Noncanonical cross ratios have been temporarily set aside
for purposes of experimentation because of their range of values. Finally,
I considered two hypotheses to be used in the experiments in the next
chapters. One is that observers can pick up the cross ratio, and the
other is that observers are attuned only to the displacement of one
element as it disrupts the rigidity of four elements on a moving plane.
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Cross Ratios and Motion Perception

In this chapter I put an invariant to experimental test, assessing its
usefulness to perceivers, Four experiments are discussed. The first two
investigate the utility of the cross ratio for judging rigidity in rotating
objects, described as case 1 in the previous chapter, and the third
experiment assesses its utility in judging rigidity of toppling objects,
described as case 2. These are then followed by an application of the
cross ratio to La Gournerie’s paradox and to the perception of film and
by a fourth experiment on dynamic projections seen from the side. The
results of all four are similar, support the cross ratio, and as a collection
rule out some competing hypotheses about how perceivers might discern
rigidity in a plane.

Experiment 1: Cross Ratios and Rotating Planes

Each stimulus consisted of four equal-length, vertical parallel lines on
a transparent plane. The plane rotated around a vertical axis at a pro-
jected distance of six times its width. Optically these might correspond,
for example, to lines 0.75 m in length, with outer lines an average of
1 m apart and the axis between the middle lines at a distance of 6 m
from the observer. Placement of the lines within the plane was random
within fixed regions.! Every trial presented one stimulus, which rotated
with the nearest lines moving leftward. Within a block, eight stimuli
were rigid and eight were nonrigid. Rigid stimuli had no lines move
from their randomly assigned placements within the plane during ro-
tation. Nonrigid stimuli had one of the lines move laterally within the
plane. Two such trials involved each line, A through D. In one, the
line moved first away from the axis of rotation, then back, and in the
other it moved first toward the axis, then away, but in both it remained
parallel and end aligned with the others.? Four frames each of two
typical stimulus sequences are shown in figure 7.1. The stimulus on
the left-hand side is rigid, that on the right-hand side, nonrigid.
Three viewers participated—two students and me, Under condition 1,
the total displacement of the rigidity-violating line in each nonrigid
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Figure 7.1

On the left-hand side are four frames from a trial presenting the rigid stimulus in
experiment 1. The cross ratio is 0.763 in all frames. On the right-hand side are the
equivalent frames from a nonrigid stimulus, where the cross ratio changes from 0.713
to 0.763 as a result of the rightward movement of the leftmost line. In a motion sequence
viewers can readily see the right-hand stimulus as nonrigid.
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trial was fixed within a block. If the average stimulus was 1 unit across,

a typical session began with a total lateral displacement of this line of

0.10 unit.? If the observer was correct on more than 12 out of 16 trials
in that block, displacements were reduced to 0.025 unit. If the observer
then got fewer than 12 correct, they were increased to 0.05, and so
forth. Under condition 2, the displacement of the rigidity-violating line
in each nonrigid trial was predetermined by the amount of change
desired in the cross ratio. A typical session began with a cross ratio
change of +0.100. If the viewer got more than 12 correct, then the
ratio-change value was reduced to 0.025; if the viewer then got fewer
than 12 correct, it increased to 0.050, and so forth.*

Results

Of most interest is each observer’s performance on nonrigid trials as
a function of the element moved, A through D. Different viewers did
differentially well at various displacements and cross ratio changes,
but there were no systematic interactions that impeded interpretation
of the patterns of performance after collapsing across all blocks. As
noted in figure 6.3, if viewers pick up secondary motions as displace-
ments of single elements, then under the condition of equal displace-
ments we would expect no difference in accuracy across the four
positions. If, on the other hand, viewers perceive changes in the stimuli
according to changes in cross ratio, then performance ought to be worse
for displacements of lines A or D than for B or C. In fact, this latter
pattern occurred for all three participants,® as shown in the left-hand
side of figure 7.2. These results are consistent with the idea that per-
ceivers are attuned to differences in cross ratio when judging whether
or not coplanar lines remain rigid during rotation.

As noted in figure 6.4, a set of predictions is also made for the
discriminability of stimuli that undergo equal changes in cross ratio. [f
viewer accuracy were a function of displacements (already falsified by
condition 1), then they ought to be able to detect secondary motion in
nonrigid stimuli better when those motions involve lines A or D than
when they involve B or C. If, on the other hand, perceivers are attuned
to cross ratios (as the results suggest above), then no performance
differences ought to accrue. Indeed, as shown in the right-hand side
of figure 7.2, the results of all three viewers show essentially flat func-
tions,® with threshold detection of cross ratio change at about 0.025 to
0.037. Of course, to observe no systematic differences is not to prove
the null hypothesis, but I take such effects in conjunction with those
of the previous condition as evidence in support of cross ratios.
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Figure 7.2

Results of experiment 1 for viewers JC, 5R, and CB. The stimulus was a rotating object.
The left-hand panels are the data for condition 1, where rigidity-violating elements had
equal displacements across positions A through D; and the right-hand panels are data
for condition 2, where rigidity-violating elements move to create equat changes in cross
ratio, The data shown are those for only the nonrigid trials. The standard errors of the
mean are shown, and the arrows indicate the mean axis of rotation. These results support
the cross ratio hypothesis.
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An Alternative Hypothesis

.The data for both conditions are consistent with the idea that the cross

ratio is an invariant used to detect rigid flatness under rotational trans-
formation. There is, however, at least one design feature that could
abrogate this claim: All stimuli rotated about an axis between lines B
and C, and mean distances of these lines from the axis of rotation was
one-third that for A and D. Reconsideration of figure 6.4 shows that,
while maintaining equal changes in cross ratio, mean displacements
of A and D under condition 2 were almost three times those for B and
C. Perhaps it is not the cross ratio that is important to perception of
these displays but only the proportion of radial motion of the line in
question to its distance from the axis of rotation. This idea suggests
that there may be a Weber fraction for the detection of secondary to
primary motions. A Weber fraction compares the stimulus change along
a particular dimension against its magnitude along that same dimension.
Thus it may be the coincidence of displacements and distance from
the axis that creates the uniformity of results under condition 2, rather
than equal changes in cross ratio. And, similarly under condition 1,
the relatively small motion of lines A and D as a function of axial
distance, as compared with those for B and C, may have caused the
curvilinear trend in the data. This is a serious problem, and it prompted
an additional test of the cross ratio in rotating planes.

Experiment 2: Cross Ratios and Asymmetrically Rotating Planes

The results of experiment-1 may reflect cross ratios, but they may be
attributable to a Weber fraction of secondary to primary motions instead.
The obvious test is to displace the axis of rotation from the center of
the rotating stimulus to the side, Two predictions arise: If the cross
ratio serves for rigidity judgments, then results should not change. If,
on the other hand, the Weber fraction serves for rigidity judgments,
then performance ought to be better for those elements nearer the axis
of rotation than for those farther away. Only one factor was changed
from experiment 1. Rather than objects rotating around an unseen axis
midway between lines B and C, they rotated around one between lines
C and D, displaced slightly toward D. All else was the same, Again,
two conditions were employed, one that held single-element displace-
ments equal within a block and one that held cross ratio changes equal.
Three viewers participated, two of us from the previous study and a
naive observer.

Results
The data show the same patterns as in experiment 1, as seen in figure
7.3. Under condition 1, where within-block displacements were held
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Figure 7.3

Results of experiment 2 for viewers JC, SR, and RM. The stimulus was a rotating object.
The left- and right-hand panels correspond to conditions 1 and 2, respectively. Arrows
indicate the mean axis of rotation. Again, these results support the cross ratic hypothesis,
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constant, observers did much better on central members of the array.
Under condition 2, where within-block changes in cross ratio were
held constant, observers had essentially flat functions. Thus these data
are consistent with the cross ratio hypothesis and provide no support
for a Weber fraction of secondary to primary motions.” Again, the
threshold for cross ratio change was about 0.025.

Experiment 3: Cross Ratios and Toppling Planes

A new set of stimuli and a new experimental paradigm were employed
to explore the generality of cross ratios as a perceptual invariant. The
new stimuli were toppling objects, shown as case 2 of figure 6.6. Each
looked like a falling ladder with four randomly placed rungs. The rungs
were equal-length, coplanar parallel lines. Unlike the stimuli of ex-
periments 1 and 2, however, these lines were accompanied by an or-
thogonal pair bracketing their ends. The six lines together formed a
rectangular lattice with bars at the ends and two others in the middle.
The boundary pair was oriented vertically before the stimulus began
to move. Optically, this object was seen as if looked down on with its
base (line D) at a distance of two eye heights. The height of the object
varied with the placement of the highest bar, but 0.60 eye height was
average. Thus it is as if one viewed an erect 6 X 1.2 m ladder, with
all but four rungs knocked out, from the front from a horizontal distance
of 20 m and a height of 10 m. Again, all these measures are proportional,
not absolute. The motion of the stimulus was the object’s falling to the
ground away from the viewer, as if support were suddenly removed.
Placement of the four parallel lines within the structure was again
random with certain constraints.?

For generality’s sake, the paradigm was also varied. Every trial pre-
sented #twe stimuli simultaneously, side by side, falling in complete
synchrony. They were equally spaced from the middle of the projection
plane. Every trial presented one rigid stimulus and one nonrigid stim-
ulus, whose nonrigidity was determined by motion within the plane
of the toppling object toward or away from the axis of rotation (line
D). In eight trials the nonrigid stimulus was on the left, and in another
eight trials it was on the right. In the nonrigid stimuli, some had line
A, B, or C moved either upward or downward. Because line D could
never move, the other nonrigid stimuli had all the other lines move,
holding their rigid relations.® Viewers indicated which stimulus, that
on the right or left, was rigid throughout the trial. Four frames from
a sample sequence are shown in figure 7.4.

Under condition 1, the up- or downward displacement of the rigidity-
violating line was fixed by block, as in the previous studies. A typical
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Figure 7.4

Four frames from a sample trial from experiment 3. The stimulus on the left-hand side
is rigid with a constant cross ratioc of 0.752; that on the right-hand side is nonrigid
because of the upward movement of the second rung from the top. The cross ratio
change was from 0.752 to 0.822. The right-hand stimulus is easily seen as nonrigid in
& dynamic sequence.
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session began with displacements of 11.4% of the ladder height. These
values were reduced and increased according to the scheme outlined.
Under condition 2, like before, displacements were determined by the
amount of change they caused in the cross ratio.'

Results

The data for each viewer were again collapsed across blocks. Under
condition 1 the same pattern recurred, as shown in the left-hand side
of figure 7.5. All data show distinct, downwardly parabolic trends across
line positions. Again, these results are entirely consistent with cross
ratio utility in perception, not the Weber fraction. As before and as
shown in the right-hand side of figure 7.5, the data for all three viewers
under condition 2 are essentially flat with a cross ratio change threshold
at about 0.025. Although the data are slightly more variable, the overall
pattern is the same and supports cross ratios rather than Weber frac-
tions.!! The results of these first three studies provoke a new analysis
of the perception of film and La Gournerie’s paradox.

Cross Ratios, Cinema, and Television

Why is it that rigid surfaces in film look rigid? In particular, why is it
that, when a viewer sits near the front and to the side of a movie
theater and watches a movie from a point at which a rectangle projects
as a trapezoid, an object does not appear to deform when it or the
camera moves? And what about television with its curved projection
surface? Consider a conjecture and a few analyses.

Film and Flat Screens

The results of experiments 1 through 3 suggest that viewers can make
judgments about the rigidity of planar moving objects on the basis of
cross ratios. This invariant specifies collinearity and, when applied to
parallel lines, coplanarity. Suppose that these results generalize and
that viewers are able to use this information not only in general but
also when actually watching film from the wrong station point.

Cross ratios have some interesting properties when applied to

La Gournerie’s paradox. One is seen in figure 7.6. Imagine a large-
screen cinematic version of the stimuli presented in experiment 1. Shown
are the relations of cross ratio measured on the virtual object, on the
movie screen, and on an imaginary plane in front of viewer A, who is
in the proper location to view the film. Viewer B, on the other hand,
is displaced well to the side. An interesting, perhaps counterintuitive,
aspect of the cross ratio is that, for an object projected onto an imaginary
plane in front of viewer B, the cross ratio is exactly the same as for
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Results of experiment 3 for viewers JC, 5R, and CB. The stimulus was a toppling object.
Again, left- and right-hand panels are for conditions 1 and 2, respectively. The data
shown are for all trials, because a rigid and a nonrigid stimulus were shown in every
trial. As before, these results support the cross ratio hypothesis,
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(a) The left-hand panels are static frames from a sequence showing a rigid, rotating
planar object (like the objects in experiments 1 and 2) when viewed on a planar display
(such as a film screen} at the correct station point. The right-hand panels show the
analogous frames as seen from an incorrect station point. Cross ratios are preserved
throughout object rotation in both cases, despite change in viewpoint and dynamic affine
transformations of the stimulus in the right-hand panels. (b) The geometry of the planar
projection for the two situations deseribed in (a).
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viewer A.!? This is true not only of any particular static frame out of
the rotational sequence but also for all frames taken out of that sequence.
Thus, when the cross ratio of the object projected onto the image plane
is preserved, it is also preserved at the viewer’s eye, regardless of where
the viewer is located. In addition, the amount of change in the cross
ratio for nonrigid stimuli is the same regardless of viewpoint. Now,
this is not to say that viewing a film from extreme angles does not
yield perceptually noticeable distortions. I am stating only that, so long
as the projection screen is planar, cross ratios are preserved. This means
information is omnipresent, specifying planarity of the projected stim-
ulus. Thus 1 would contend that, contrary to implications of Pirenne
(1970), no cognitive process may be necessary to compensate for certain
affine distortions in dynamic stimuli. Instead, the information in the
array survives these distortions and can be picked up by the visual
system in these circumstances. A fourth experiment was conducted to
determine if the psychological utility of cross ratios remained when
viewing from the side a projection of a rotating plane.

Experiment 4: Cross Ratios and La Gournerie’s Paradox

Experiment 4 was exactly like experiment 2, except for the use of a
double planar projection system, shown in the right-hand side of fig-
ure 7.6. Because Pirenne (1970) suggested that edges of the projection
surface are used when looking at slanted photographs and because [
am not interested in such contextual factors, these surfaces were removed
from the display. This was done by exchanging imaginary for real
projection surfaces in figure 7.6, as shown in figure 7.7. The angle
between the two was changed to 45°. Thus, although the frame of the
display scope was rectangular for the observer, the shapes of the rotating
stimulus were like those in the right-hand panels of figure 7.6, with
the right-hand elements slightly longer than they should be as a result
of perspective transformation. Extending the rules of projection sug-
gested by Alberti and following those of La Gournerie, [ reconstructed
the shape of the object in virtual space behind the image plane. If the
lengths of the lines remain constant, the object itself must deform,
collapsing and expanding like an accordion as it rotates in place. Such
behavior is obviously not that of a rigid planar object. Can observers
see the object as rigid, and can they detect nonrigidities resulting from
displacements of single elements in the same way as in experiments 1
through 3? I was the only observer under conditions 1 and 2, where
displacements and cross ratios were varied, respectively.
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Figure 7.7

A top view of reconstructions in virtual space of the rotation of four coplanar lines, with
an imaginary projection plane at a 45° angle to the primary projection surface, Notice
that the reconstructions make the primary virtual object {shown in large dots) nonrigid,
expanding and contracting as it turns. The secondary virtual object (shown in smaller
dots) remains rigid throughout. These reconstructions show the affine distortions of the
stimuli; perspective distortion is seen in the right-hand side of figure 7.6a.
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Figure 7.8
The results of experiment 4 for viewer JC. The data support the cross ratio as one answer
to La Gournerie’s paradox. The stimulus was a rotating object.

Results and Discussion

My data are shown in figure 7.8 and reveal the same patterns as before.
Under condition 1, where displacement of a rigidity-violating element
was held constant within a block, I performed much better on the
central than peripheral members of the array; and under condition 2,
where cross ratios were varied uniformly within a block, I performed
almost uniformly throughout,” with a threshold at 0.025. Thus, not
only is the cross ratio constant during any view of a planar projection
of a rotating rigid object, but its utility appears general as well. The
human visual system, then, may not be very sensitive to, or may easily
filter out, certain affine and perspective transformations.

Affine distortions, although they preserve collinearity, do not preserve
angular arrangements of three points other than 180°. Thus, when
viewing a rotating three-dimensional object from the side, an observer
may view the intersections of adjacent sides as acting like hinges. This
creates some impression of nonrigidity because the surfaces remain
rigidly flat but their dihedral intersections alter. A psychophysical study
of the perception of dihedrals undergoing motion is needed. Unfor-
tunately, such a study is beyond the scope of the present investigations.
What is available, however, are studies by Perkins (1972) and Shepard
(1981) on static trihedral intersections of planes and a study by Braun-
stein (1962) on coherence in three-dimensional arrays of moving dots.

Perkins (1972) and Shepard (1981) asked observers to discern whether
or not the intersection of three lines could be a projection of the corner
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of a rectangular solid, what I call a right corner, and found great latitude

- in what observers would accept. We can interpret these results in several

ways, but they may mean that observers are not very attuned to the
distortions of right corners. That is, x, ¥, and z axes can undergo con-
siderable shear against one another, and the observer will still see a
right corner, provided that the configuration is a possible projection of
one. This, of course, is exactly what happens when an observer views
a rotating rectangular solid from the side of a movie screen. In a casual
elaboration of his study, Perkins (1983, pp. 347-348) suggested:

As we stroll down the street glancing about, it would seem that
buildings do not appear to have the same proportions when we
approach them as when we are opposite them. We live in a rubber
world, but do not notice it, perhaps because intellectual assumptions
about the stability of object shapes override the messages from
our perceptual system per se.

Whether or not such intellectual elaborations are necessary, the relative
insensitivity to distortions of right comers is clear. Thus, if we are
relatively sensitive to cross ratios but relatively insensitive to affine
and perspective transormations of right corners, then La Gournerie’s
paradox for film is explained.

Braunstein’s (1962) results, however, place limitations on this view.
He presented groups of dots rotating in virtual space seen in varying
degrees of perspective. He noticed that increases in perspective (views
from closer up) increased apparent depth but decreased coherence.
That is, the array of dots did not seem to be part of a rigid system but
instead deformed. If observers are generally insensitive to transfor-
mations under projection, no such effect ought to accrue. This effect,
however, was not particularly large; a parallel projection of the moving
dots was preferred over one of high perspectivity only about 30% of
the time. Moreover, because the result was found for unconnected dots
rather than for lines, it is not clear how effectively it should generalize
to a richer cinematic situation,

Rephotography demonstrations by Pirenne (1970) and Gregory
(1970), in which pictures of other pictures are taken from oblique angles,
also pose a problem for my analysis. In these demonstrations the ob-
server can discern that distortions have occurred. In particular, Pirenne
juxtaposed faces in an affine-transformed (or slanted) format with nor-
mal faces. He suggested that information about orientation of the image
surface is crucial to an explanation of the paradox. Of course, I would
like to see these demonstrations repeated in cinematic format, like that
of experiment 4. My suspicion, although uncorroborated at this time,
is that rephotography transformations are most noticeable when a pho-
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tograph contains both the distorted and undistorted figures. This dual
representation forces the observer to discriminate, rather than merely
identify, the contents of the pictures. Viewers are almost always good
at discriminating, but whether or not they spontaneously notice trans-
formations of what they identify is another matter.

Television and Curved Screens

Television, unlike film, uses curved projection surfaces. Most screens
are convex, bowing outward in three dimensions toward the viewer,
but many new sets have a cylindrical surface. Curvature in the screen
is not used to normalize distances between cathode-ray gun and screen,
as one might suspect, but to combat differential atmospheric pressure
inside and outside the tube (Spooner 1969). Pincushion and barrel
distortions are overcome by magnetic coils that alter the trajectories of
electrons hitting the projection surface, and alignments are tuned for
a viewer sitting directly in front of the screen along the surface normal
to its center. Because adjustments can be made on most sets, the correct
distance from the screen is variable, but a typical width is about 10°
of visual angle.

When curvilinear surfaces are used for back projection, as they are
in television, projective distortions will oecur for any viewer not sitting
directly in front of the set.’* And strictly, the invariance of the cross
ratio is broken from all viewing positions other than the position for
which the set is adjusted. Television engineers have designed sets so
that the curvature is as small as possible. I measured several different-
sized standard televisions and monitors and found that the screen is
a close approximation to a section of a sphere whose radius is about
three times the screen width. If we assume that viewers can sit anywhere
in front of the set, we can determine the locations where unsatisfactory
distortions in the projected image will occur. In particular, if we imagine
the stimuli used in experiments 1 through 3 projected onto a television
screen (which in curvature is functionally equivalent to what they ac-
tually were projected onto), then we can determine isodeformation
contours similar at least in spirit to those of Meister {1966). Experimental
results suggest that changes in cross ratios of about 0.03 are at threshold
for detecting nonrigidity. This value is based on stimuli whose cross
ratio changed solely because of the movement of one line, but suppose
that it generalizes to cases where more than one line has moved because
of projection surface curvature.

Let me make the simplifying assumption that the rotating stimulus
projected onto the middle half of a television screen consists of four
equally spaced lines. The empirical question is: How much does its
cross ratio change at any given viewpoint? Regions are delimited in
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Figure 7.9

Iso—cross-ratio-change contours for a rigid stimulus with four equal-spaced elements
projected onto a curved surface like that of a television set. The threshold for detecting
nonrigidity through cross ratio change in experiments 1 through 3 is about 0.03, a value
not reached until the station point is at an angle of 11° to the tangent to the center of
the curved screen.

figure 7.9 for various viewing positions according to how much the
cross ratio would change. What is remarkable is that for a rigid object
the cross ratio changes little, regardless of where the viewer sits. In
fact, the viewer would have to be located at an angle of 11° to the
center of the screen {where 90° is looking head-on) in order for the
cross ratio to change to the experimentally determined threshold value.
Notice that these curves are unlike Meister's (1966) in figure 3.2;
a viewer can sit far to the side, and information for rigidity remains
satisfactory. At such extreme viewpoints the esthetic aspects of image
distortion may be intolerable, as Meister suggested, but much structural
information remains.

Overview

The results of four experiments suggest that perceivers use cross ratio
information in making judgments about the rigid planarity of four
parallel lines. These results indicate that invariants and projective
geometry may be used in everyday perception.

If cross ratios are used in the perception of film and television, then
La Gournerie’s paradox can be explained. That is, the affine distortions
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in a virtual object resulting from a change in the station point do not
alter cross ratios when the projection surface is flat. Experiment 4 dem-
onstrated that the utility of the cross ratio holds under these conditions.
Perhaps even more striking is that cross ratios change little, even when
the projection surface is curved. If observers are relatively undisturbed
by regular affine transformations of objects—transformations that
change angles of intersection among surface planes but not local mea-
sures on any given plane—then La Gournerie’s paradox completely
disappears.”

This view is somewhat similar to that of the curved-world theorists
discussed in chapter 4. That is, directly or indirectly, Watson (1978)
and Indow and Watanabe (1984) suggested that we simply do not
notice curvature of straight lines except under analytic conditions; here
I suggest that we may not notice affine distortions except under similar
conditions. The difference between their ideas and mine is that curved-
world theorists suggest that the default state of visual space is curved;
I suggest that it is not but that we are probably equally tolerant of all
Riemannian curvatures near zero,’® just as we are tolerant of affine
transformations of Euclidean space.

8

Limitations and Extensions of Cross Ratios

The results of the experiments presented in chapter 7 indicate that the
canonical cross ratio can serve as optic information on which rigidity
of planar surfaces can be judged. Yet the cross ratio has serious limi-
tations. One purpose of this chapter is to address some of these.

The first limitation is that the cross ratio is confined to collinear points
or coplanar parallel lines. Such one-dimensional information may be
reliable for the perception of certain flat surfaces but certainly cannot
be for three-dimensional objects. What would the perceptual system
do if no four elements were collinear? It seems unlikely to me that the
perceptual system would be worse in judging rigidity when no collin-
earities existed, yet this is the prediction if changes in cross ratio were
the only source of information used.

A second limitation is that the cross ratio is confined to four and only
four elements; cross ratios cannot be calculated on three elements, and
multiple cross ratios must be calculated on at least five. The three-
element problem is a nagging limitation addressed directly by Simpson
(1983) and indirectly by Lappin and Fuqua (1983). The latter study
showed that viewers are extremely sensitive in determining equal virtual
spacing of three collinear dots on an oscillating slanted line. The use
of five elements yields computational inelegance. If there were five
collinear elements to be considered and-only one moved, an embar-
rassment of riches would follow as to how cross ratio information could
be used. There are four cross ratios in flux, Perhaps it is the average
change in these ratios that the perceptual system would pick up. The
problem, however, is that the number of ratios burgeons exponentially
as the number of elements increases linearly. Thus, for example, if
there are 12 collinear elements and one of them moves, there are 165
ratios in flux. The utility of cross ratios seems diminished in such a
situation. Parsimony suggests that some other information be used.

These two limitations would seem to make the perceptual utility of
the cross ratio so small as to be freakish, but there is another possibility.
Perhaps the canonical cross ratio is merely one of a class of measures
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that deals with distance relations among elements and of more general
measures encompassing relations in two and three dimensions and
among three or more elements. This possibility is attractive, particularly
in view of the third limitation of the cross ratio as I have used it: That
is, the canonical cross ratio is but one of six ratios, each having a
different numerical value. Cross ratios 2 through 4 in table 6.1 have
some of the same properties; namely, they change more with equal
displacements of interior (B or C) rather than exterior (A or D) elements.
But the magnitudes of the changes in cross ratios are not the same.
For equally spaced elements the changes in interior versus exterior
element shifts are about the same for cross ratios 2 and 4, differences
of about 3:1. But for cross ratio 3 it is more than 4:1. And most striking
is that for cross ratios 5 and 6 it is 1:1. If perception were deeply
connected to the cross ratio, I assume that it would be connected to
all of them, yet the results of experiments 1 through 4 do not support
that view. To investigate this conundrum, reconsider certain properties
of the canonical cross ratio.

Again, points A, B, C, and D are equally spaced; again their cross
ratio is 0.750. If the locations of B, C, and D are fixed but A slides back
and forth (near and far) from B, the cross ratio varies between 1.00
and some value asymptotically above 0.00. Similarly, if the locations
of A, C, and D are fixed and B slides back and forth between A and
C, the ratio varies between the same limits. Figure 8.1 shows the rates
at which such changes occur. In the upper panel the vertical axis shows
the absolute value of the cross ratio at every point through which A
is moved, in the lower panel, the values for B. Notice three things:
First, the closer A moves to B, the more rapidly the cross ratio changes.
Second and similarly, the more B approaches C, the more rapidly it
changes. But third, when point B is near to A and moves away from
it, the cross ratio does not change much. I will return to this fact later,
but it can be considered yet a fourth limitation of the cross ratio. In
two cases out of three, however, the cross ratio changes faster when
the displaced element is near to another. As should be clear, changes
with movements of points C and D would be symmetric with B and
A, The general pattern, then, is that cross ratio change is a function of
proximity of a displaced element with others. Restated, cross ratios
change more when a moving element is in a region that is more densely
packed. Thus changes in cross ratio may have a systematic relation to
various measures of density. The pursuit of this idea is the crux of this
chapter.
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{Top) The changes in the cross ratio when element A is moved. (Bottom) The changes
in the cross ratio when element B is moved. For both curves the elements are evenly
spaced.

Cross Ratios and Density Indexes

Krumhansl (1978) proposed a distance-density model to account for
spatial relations in similarity data. Although intended for psychological
data, the model performs well in cases in which similarities are measured
as physical distances (Appleman and Mayzner 1982, Krumhansl 1982).
I measure similarity in this same way, using absolute distances among
elements to determine the density at any given point. Krumhansl (1978}
demonstrated many ways in which researchers might permute distance
information in developing measures of density. I use four, three of
which she discussed. Before specifying them, however, consider some
criteria by which the different measures might be assessed.
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Five Criterig for Density

1. Applicability to Three or More Points. As mentioned earlier, one
shortcoming of the cross ratio is that it applies to four and only four
points. A general density measure should apply to all situations in
which more than two elements are involved.

2. Applicability to Multidimensional Stimuli. Again, a second short-
coming of the cross ratio is that its measure demands collinearity. A
more general measure ought to be applicable to two and more di-
mensions. For purposes of comparison with the experiments of
chapter 7, however, I test potential measures in only one dimension.

3. Invariance under Transformation. The cross ratio contains its own
scale factor. That is, it remains the same regardless of the general size
or distance of the object measured. In addition, that object could be
turned at various angles to the line of sight, introducing perspective
distortions with no change in cross ratio. Insofar as possible, the density
measure chosen might have these properties: invariance under reflection,
translation, dilation, and rotation. The cross ratio is an invariant under
polar projection, but unfortunately the density indexes discussed in
what follows are not.! Thus I measure density in the two- or three-
dimensional space of the object itself, not in the projection. For this
reason 1 do not consider these measures to be invariants,

4. Continuity. Across the physical space of an object, density should
be a continuous function, with no holes or gaps. Thus it ought to be
measurable not only at the elements themselves but also at all places
in between, generating density fields.

5. Continuous Variation. Not only should density functions have no
holes, but also over scattered points they should have no large con-
tiguous areas of the same density. In other words, the function ought
to be smoothly varying,.

Four Density Indexes

A variety of density indexes can be entertained. Index I, the first and
simplest, I call the distance index. The density 9 at any given spatial
location, i, is determined by

aiy= 2 X dy/ Y dy (8.1)

i J=i

where i and j are any two points in question and d,; is the linear distance
between them. The numerator is the sum of all distances between all

points, and the denominator is the sum of all distances from a particular
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point i to all others.” The panels of figure 8.2a show the functions that

“this index generates. The top one shows the density function for four

equally spaced points. To obtain it, a fifth point was moved throughout
the space from left to right and density measured at each location. Dots
mark locations of the four points in question. Below that panel is the
function for seven equally spaced points, below that a function for four
unequally spaced points, and finally a function for seven unequally
spaced points. Values on the ordinate are arbitrary, but ratio is scaled.
For this discussion only relative density is important.

Intuitively, the functions for evenly spaced points make a certain
amount of sense: Points in the middle of the array are in denser regions
than those at the periphery, and the even spacing yields symmetric
functions. There is a small problem with four-point arrays. The area
in the middle is flat, a violation of criterion 5. It turns out that for
index 1 all even numbered arrays have a flat region between the two
centermost points. This feature seems less than desirable. A larger
problem is that with both odd and even numbered arrays the larger
gaps between elements do not show decreases in density. This seems
out of sorts with my intuitions of how a density function should look.

Another potential problem with the distance index is that the effect
of distance between any two elements is linear. In fact, if there is
anything like gravitational attraction between elements, we would as-
sume that the distance would be represented nonlinearly. Rather than
squaring distance, however, I chose to measure it reciprocally. Thus I
call the second measure the reciprocal distance index. It is a small modi-
fication of Eq. (8.1), given as

o) = 2 1/dy /X 31/, (8.2)
j=i Pojei
where the numerator is the sum of the reciprocal distances from point i
to all others and the denominator is the sum between all pairs.

Density functions generated by index 2 are shown in figure 8.2b.
These have the obvious flaw of being discontinuous, violating criterion 4.
They approach infinity when density is measured at one of the points
in question because 1/d; becomes undefined for zero distance. I would
argue that density near a point ought to be quite high, though not
infinitely so. Other than these infinite poles, however, the function
seems fine. In particular, the gaps in uneven distributions generate low
densities.
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Figure 8.2

Four measures of relative density as applied to equally and unequally spaced distributions
of four and seven points. (a) The functions for the distance metric (Eq. (8.1)). {b) The
reciprocal distance metric (Eq. (8.2)). (c} The fixed radius metric {Eq.(8.3)). (d) The ex-
ponential metric (Eq.(8.4)).
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Index 3 is a fixed radius measure. It simply counts the number of
points along the axis that are within a fixed radius r:

a(iy = Z ki (8.3)
where k; = 1 if d; <7, and 0 if d; > r. One possible radius is D, the
mearn of all distances between all possible points. The density functions
generated from index 3 with r = D are shown in figure 8.2c. Clearly,
these are step functions without continuous variation. They also tend
to have the same problem as index 1: When points are unevenly spaced
with large gaps, -density is highest in the middle of the gaps.

Finally, the fourth index is an exponential index:

&) = X e/ 2 e, (84)
FEi i j#i

where e == 2,718, the base of natural logarithms; d = d,/D, the nor-
malized distance between all points i and j; and k is an exponential
constant. The constant I chose is 3.33, but a wide variety would do.
The increased cumbersomeness of index 4 is compensated for by the
features it possesses. Shown in the panels of figure 8.2d are the density
functions for the same arrangements of points considered previously.
There are no infinite poles, density is highest at the points themselves,
and when gaps occur, density drops. All these features are desirable
attributes, and as a cluster they are not shared by the other indexes.

Because perception seems coupled with changes in cross ratio, density
should be highly correlated with them if they are to account for per-
ception. Thus the density measures must now be compared with changes
in the canonical cross ratio.

A Simulation Study

To assess the correlation between density and change in the canonical
cross ratio, a simulation study was conducted. Nine conditions were
tested, involving four to twelve points in one-dimensional, randomly
generated arrays. Consider first the condition in which four points were
used. The location of each element was determined by a randorm number
between 1 and 1000, indicating the interval position along a line, say,
from left to right. Points were then ordinally arrayed. As an example,
consider points A, B, C, and D at positions 55, 406, 573, and 898,
respectively. These are called the original positions and their cross ratio
is 0.564. Manipulations of these points were as follows: Point A was
moved five units to the left {to position 50), the cross ratio noted (0.562),
then moved five units to the right of its original position (to position
60), and the ratio noted again (0.565). The difference between these
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Table 8.1
Mean of Median Correlations of Density Measures with Mean Changes in
Cross Ratio

Density Index

1 2 3 4
g;?:::sc’f gg:;ﬁil’;igi {Distance) (Reciprocal (Fix_ed (Expp-
in array involving each distance) radius) nential)

3 - - - - -
4 1 0.97 0.96 0.80 0.96
3 4 0.97 0.95 0.75 0.96
6 10 0.97 0.93 0.80 0.96
7 20 0.96 0.92 0.81 0.95
8 35 0.94 0.91 0.80 0.95
9 56 0.93 0.89 0.79 0.95
10 84 0.92 0.90 0.80 0.95
11 120 0.91 0.89 0.81 0.96
12 165 0.90 0.89 0.81 0.96

two was recorded (0.003), and the procedure repeated for points B, C,
and D (cross ratio differences of 0.022, 0.023, and 0.003, respectively).
Then the four changes in cross ratio were correlated with the density
values of each of the four points at their original positions. Correlations
were calculated for each of the four density measures and stored in
computer memory. This procedure was then repeated 101 times within
a block, and the median correlation was computed. Forty blocks were
run. The mean of median correlations is shown in table 8.1.

All correlations were quite high. For four elements there were no
essential differences among indexes 1, 2, and 4, with correlations very
high, ¥ = 0.96 or better. Index 3 was reliably lower. On the basis of
these data alone there is little reason to choose among three contending
indexes. In fact, correlations for indexes 1, 2, and 4 might have been
even higher except for the one violation in the parallel between cross
ratio change and density: When B moves and is near A (or C near D),
the density is relatively high, but the change in cross ratio is relatively
low. Indeed, inspection of individual simulated trials indicated that
these yielded lowest correlations.

Consider next arrays of five and more points. In each case the points
were randomly positioned from 1 to 1000 and ordinally arranged. In
the five-point case consider elements A through E. When A is moved
in the same manner as before, four cross ratios change, those involving
ABCD, ABCE, ABDE, and ACDE. These were noted, averaged, and the
procedure repeated for B, C, D, and E. Mean values at each point were
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then correlated with density indexes. Again 40 blocks of 101 arrays
each were generated for arrays of size five through twelve, and the
mean of median correlations are shown in the table.? With increase in
array size, indexes 1 and 2 decreased in relation to the cross ratic, index
3 remained roughly the same but still below the other three, and index 4
remained high for all cases. Thus, not only does this index have intuitive
appeal in the function shapes that it generates, but it also matches best
the mean changes in cross ratios. Index 4 is used in experiments 5
and 6.

Other Cross Ratios

The results of the simuiation study indicate that density is highly cor-
related with change in canonical cross ratio. What is not shown, how-
ever, is the correlation with the other five cross ratios. For completeness’s
sake, I must consider these. Although intensive simulations were not
performed for the various density measures and other cross ratios, more
limited ones were, and the results indicate that variations in cross ratios
2, 3, and 4 are about equally correlated with each density index, as is
the canonical cross ratio. Cross ratios 5 and 6 are not.

I take these results to be salutary. It is something of an embarrassment
to discover that the six classes of cross ratios have different numerical
properties when the position of a single element is manipulated. That
the perceptual system seems generally to follow the canonical cross
ratio is fine, but no tests were provided for the others. I selected the
canonical cross ratio because it has restricted range and most practically
because it is the standard textbook form. That several of these cross
ratios (1 through 4) are correlated with density provides some substance
to a unifying theme. In particular, if density provides a framework for
the detection of nonrigidity and if density is correlated with changes
in many of the cross ratios, then we have some evidence that cross
ratios 1 through 4 may have been equally sufficient in experiments 1
through 4. To be sure, cross ratios 5 and 6 remain outliers. The results
of the simulation study are consistent with the idea that the cross ratio
is part of a larger class of density measures. Experiments 5 and 6 use
index 4 to determine if perception of nonrigidity follows density mea-
sures as well as it did changes in canonical cross ratio.

Experiment 5: Randomly Spaced Elements on Rotating Planes

Both experiments 5 and 6 had three conditions, which were designed
to assess viewers’ ability to judge rigidity in a rotating stimulus. Con-
dition 1 involved a rotating plane with three parallel lines, condition 2
one with four lines (replicating experiments 1 and 4), and condition 3
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with seven., The methods were essentially identical with those of ex-
periments 1 through 3, and the stimulus situation—asymmetrically
rotating planes—like that of experiment 2. The positions of the elements
were randomly determined within spatial constraints. The three ob-
servers of experiment 2 participated, viewing about 40 hr distributed
over a month’s time. As before, each experiment consisted of many
blocks. There were 12 trials per block under condition 1, 16 under
condition 2, and 28 under condition 3. Again, half of all stimuli were
nonrigid. Each session began with a block whose nonrigid trials were
easily noticed. The total displacement of the rigidity-violating line was
10% of the mean width of the plane for the three- and four-element
conditions and 5% for the seven-element condition.* Performance was
always near perfect on this block, so displacements were halved for
the next. If the modified staircase procedure was followed, then dis-
placements varied around threshold for each participant.

Results

Analyses again concern the main effect—each observer’s performance
at detecting nonrigid trials as a function of the displaced element. Con-
sider first the three-element data. As before, only those trials on which
errors occurred are considered, and these are shown in the left-hand
plots of figure 8.3. There was a clear and systematic relation between
petformance and ordinal position of the displaced element, corroborating
the importance of density for perception. The four-element data are
shown in the middle of the same figure and repeat the performance-
density parallel. This result was expected because this condition most
closely replicates experiment 2. And in the right-hand plots of figure
8.3 are the relations between performance and density for the seven-
element stimuli. Again, the parallel recurs.’

The results are consistent with the idea that the local density of the
rigidity-violating element is the major determinant of viewers’ judg-
ments of nonrigidity. In the manner of the previous studies, a com-
plementary test was conducted: If a rigidity-violating element always
appears in a region of the same density, it ought to be equally easy
(or difficult) to detect, regardless of the ordinal position in which it
appears and the number of elements.

Experiment 6: Equal-Density Elements on Rotating Planes

Again, rotating stimuli with three, four, and seven elements were used,
and again they formed the basis of conditions 1 through 3. Initial
positions were randomly generated, as in experiment 5 and previous
studies. To achieve equal densities for the mean position of the rigidity-
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The results of experiment 5 for viewers JC, SR, and RM. The percent performance for
each viewer on each element in the nonrigid trials is plotted above the mean measured
density (index 4). The arrows indicate the axes of rotation. The stimulus was a rotating
object. The data in the center plots (axis of rotation between C and D) are a superset of
those in experiment 2 under condition 1.
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violating element, however, the positions of the other elements were
systematically manipulated. Generally, if an exterior element was to
violate rigidity, other elements were moved toward it as a rigid unit
in order to increase its density; on the other hand, if an interior element
was to violate rigidity, elements on both sides were moved away from
it as rigid units, All distances were then normalized so that the visual
angle of stimuli was the same as that in experiment 5. The density
values used were 0.86, 0.50, and 0.30 for conditions 1 through 3, re-
spectively. Different values were chosen because no single value could
be achieved across the three conditions; but this should not matter
because the theory is that it is relative densities, not their absolute
values, that are thought crucial to perception. Displacements within a
block were modulated as before using a staircase procedure.

Results

Again, the effect of most interest is observers” performance at each
ordinal position within a stimulus. The left-hand plots of figure 8.4
shows the three-element data for all three viewers. For two out of the
three observers there were no reliable differences across element po-
sitions, as the density hypothesis would predict. In the middle plots
of the same figure are the viewers’ data for the four-element stimuli.
For two out of the three observers flat functions were again found.
And on the right-hand plots are the seven-element data, where for a
third time two out of the three observers upheld the null prediction.®
In general, then, as a superordinate to the cross ratio, density appears
to be a potent perceptual property.

Density and Perception

In the first section of this chapter, I listed five criteria for density mea-
sures, Two were relatively unproblematic—that density functions for
discrete points be continuous and continuously varying. These were
met amply by index 4, the exponential index used in the present studies.
The other criteria, however, raise deeper issues.

Applicability to Mere Than One Dimension

The data of the present studies do not speak to multidimensional sep-
aration. Parallel bars on a plane are two-dimensional stimuli with vari-
ation in only one dimension, and rotation in three dimensions does
not increase the dimensionality of the stimulus variation per se. Thus
there is the possibility of application of density to an object in more
than one dimension, but there are no data as yet in its support.
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The results of experiment 6 for viewers JC, SR, and RM. The performance is plotted
above the measured density. The arrows indicate the axes of rotation. The stimulus was
a totating object. The data in the center plots {axis of rotation between C and D) are a
superset of those in experiment 2 under condition 2.
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The index 4 density distribution for 100 evenly spaced points on a line. The dots delimit
the bounds of the array.

Invariance under Transformation

Any source of information that is to aid perception ought to, in its
proximal properties, mimic the distal properties of the object under
consideration. If the object moves closer to the observer, moves away
from him or her, turns on any axis, or translates across the field of
view, some sources of information ought to change in registration with
the object. If the object itself does not change in shape, however, then
some measure ought to remain constant, reflecting the object’s con-
stancy. The density measure used in the last two experiments is intended
to be of the latter sort, but it is not an invariant. Density is simply a
dimensionless number, measured at any location in the virtual space
of the configuration but not on the projection surface.

Applicability to Points
Each density formulation is pointillistic, despite the fact that all generate
fields of relative density. Most objects in our environment are not points
at all but solid surfaces with measurable extent. Because a solid flat
surface is a two-dimensional space of infinitely dense poeints, a question
arises: What happens to density measures with increasingly dense
points? An idea of this can be seen in the top panels of figure 8.2d.
When four evenly spaced points are considered, the middle points
occupy denser regions than peripheral points. When seven evenly
spaced points are considered, however, the relative difference between
interior and exterior points begins to disappear. A more extreme case
is shown in figure 8.5, where 100 evenly spaced points are considered,
bounded by markers shown on the x axis. By extension from this plot,
we see that an infinitely dense array of points should yield a density
distribution that is uniform throughout except near its edges. At the
limit, the density field is probably little different from the shape of the
object itself.

But in defense of pointillism, it is not clear what is really lost in
points analysis. Despite the fact that objects are composed of infinitely
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dense points, it seems a strong assumption that all points are equally
important to the visual system. Instead, points of high contrast or those
created by intersecting lines ought to be more salient than others. Per-
haps these could be weighted by contrast level or by illumination (Prof-
fitt et al. 1983).

Overview

The results of the simulation study and experiments 5 and 6 corroborate
what went before. The first four experiments suggested that perceivers
use the cross ratio of four elements in making judgments about rigidity.
In turn, the simulation showed a strong correlation between change
in the canonical cross ratio and the density at a given point where
rigidity violation may occur in an array. And experiments 5 and 6
showed that the perceptual system corroborates that correlation and
treats the relations among coplanar parallel lines. Despite the short-
comings of the cross ratio, then, it still seemns likely that the perceptual
system uses information of this sort.

Let me clarify one point: 1 do not contend that index 4 is a com-
putational algorithm used by the visual system. I suggest only that it
captures constraints on the information used for making perceptual
judgments. I assume that the visual system performs some structure-
through-motion analysis, perhaps along the lines proposed by Ullman
(1979). 1 assume further that densities at various points in the space
around and on the object correspond to the sensitivities of the algorithms
for determining a unique three-dimensional interpretation.” In regions
of high density, the algorithm—whatever form it takes—should be
sensitive to any point not in rigid relation to others, and in regions of
low density it should be less sensitive. In other words, density measures
predict the tolerance of the human visual system for small perturbations
in the registration of the locations of particular points in the array.
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Cross Ratios versus Flow Vectors

In chapter 7 [ presented evidence that observers can pick up information
from a moving display through the cross ratio of four coplanar elements.
In chapter 8 I digressed to show that the cross ratio is limited in scope
but that it might be considered a member of a broader class of density
measures. In this chapter I reconsider the cross ratio. My goal here is
to explicate cases 3 and 4 of figure 6.6, in which the cross ratio (or a
density analog) can be used in two perceptual tasks but is not. The
basis of the two experiments presented here is different from the pre-
vious six. In those experiments a global stimulus measure (cross ratio
or density) was pitted against a local, nonrelational cue (secondary
motion of a single line). In experiment 7, by contrast, two global mea-
sures (invariants) are put into competition. The first is the cross ratio,
an invariant of configuration. The other is not specified in theorems
of projective geometry; it is the uniform pattern of flow specifying the
height of the observer’s eye above a flat surface.

Eye height is the new term in this discussion, and it is central to
what follows. The eye height for a person of average stature is about
1.5 m. If elements are seen from different altitudes—for example, three
elements normalized to 1.0 eye height below the moving station point
and one at 1.1 eye heights—then the relative motions of these points
in optic flow reveal that one element is on a dip in the plane, at a
lower elevation than the other three. If these elements are seen from
the same height, on the other hand, their optic vectors specify co-
planarity, or flatness.

Case 3: Specification of Coplanarity by Flow Vectors

Under ideal viewing conditions, which include standing on a perfectly
flat terrain, the horizon is at eye height. If the angle from the eye to
the horizon is set at 0°, the angle ¢ formed by the ray from the horizon
to the eye to any element on the surface is (figure 9.1) given by

¢ = arctan(y/z), . 9.1)
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Y horizon

Figure 9.1

The geometry of case 3 (see figure 6.6) in which three elements have the same eye height
and one has more; ¥ is the eye height of the observer above a given element, and z is
its distance from the point beneath the eye nearest to the plane of support.

where y is the eye height above the plane on which the object is found
and z is the horizontal distance from the observer’s feet to the object’s
base. But nothing about ¢ can specify the flatness of a surface unless
the plane undergoes motion, usually caused by the movement of the
observer. To discuss this flow we need calculus. The calculus is not
difficult nor is its use intended to obfuscate. But it is needed as a tool
to measure instantaneous changes that constitute a flow pattern.

-When the observer moves along the z axis with his or her eye at a
fixed height, angle ¢ for each texture changes. Measurement of the
change in this angle entails taking the first derivative of Eq. (9 1) with
respect to z:

dg/dz = v = —y/(y* + 2°). (9.2)

For simplicity’s sake, d¢p/dz = v, an instantanecus displacement. Notice
that, as 1 did not calculate a time derivative, these are not relative
velocity vectors. Instead, they are displacement vectors associated with
movement along the z axis, regardless of the forward speed of the
observer. Thus these relations hold equally for fast or slow locomotion.
Because by rearranging Eq. (9.1), z = y/tan ¢, Eq. (9. 2) can be rearranged
and rewritten as

y = —tan?¢/[p(1 + tan? ¢)]. (9.3)

Relative eye height y thus becomes a somewhat cumbersome optic
property of the viewing situation. Because tan®¢ is very small when
objects are near the horizon (0.0003, 0.008, 0.03, and 0.07 for optic
angles of 1, 5, 10, and 15°, respectively), Eq. (9.3) is approximated by

¥y = —tan’ ¢/v. (9.4)

Cross Ratios versus Flow Vectors 133

Here, we can more easily see that the displacement vector (v) and its
location in the visual field (angle ¢) determine eye height.

Three aspects of these calculations are important. First, Eq. (9.3) holds
for all those points in the optic array along the line of movement of
the observer, or more simply as measured vertically down the scope
face. Points to the left and right near the line of movement have diagonal
vectors of increased magnitude. Lee (1974}, Koenderink and van Doorn
(1981), and Longuet-Higgins and Prazdny (1980) presented different
approaches to the same problem, as I will in chapters 12 and 13. But
here, because the textures of flow in this study are lines orthogonal to
movement and sight, the measures of Eq. (9.3) suffice. Second, this
analysis is based on a mapping of proximal information (v and ¢) onto
distal information {y and z). Various other mathematical manipulations
could be performed, but 1 have chosen this relation because of its
similarity to those in the cross ratio. There, proximal relations among
angles a, 8, and v were mapped onto distal relations among points A,
B, C, and D. Third and most important, eye height as discussed thus
far pertains to each element of the array. But this does not make it an
invariant. When observers move over a plane, it is not the displacements
and locations of single elements that are important but rather those of
the whole set. Thus the concern of the moving observer is whether or
not the right-hand side of Eq. (9.3) yields the same eye height for all
elements. If it does, the plane is flat; if not, the plane is not.

Of central importance, then, is the relative ordering of the values of
y for each element. 1f they have the same value, then the surface is
smooth, even, and planar. If, on the other hand, they are unequal but
appropriately ordered at all instants during movement, then the surface
is not. Thus the perceptual invariant 1 propose is not the eye height
of individual elements but their relative order as generated by optic
flow, For simplicity’s sake, however, I call it the eye height invariant.

Experiment 7: Cross Ratios, Flow Vectors, and a Surface of Support

Dynamic stimuli again consisted of four equal-length, generally coplanar
parallel lines projected in depth.’ These were orthogonal to the line of
sight on the floor of a long hallway in the virtual space behind Alberti’s
window. At the beginning of the display sequence, the nearest line
was at a mean distance of 13 eye heights from the viewer’s feet (line
A), and the farthest (line D) was 16 eye heights away. Stimulus motion
consisted of these lines moving toward the observer (as if the viewer
were moving through the environment) until the nearest line was at
a mean distance of 4 eye heights and the farthest about 7. The lines
then flowed backward to their original distances, as if the viewer backed
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Figure 9.2

Four frames taken from each of two stimulus sequences from expetiment 7. Those on
the left-hand side correspond to a flat surface, and those on the right-hand side to a
nonflat surface with line B (the second from the bottom) (.05 eye heights below the
plane of the others, a dip corresponding to about 8 cm (3 in). Such noncoplanarities are
relatively easy to detect in the motion sequence.

up to the starting position. The cycle repeated three times within a trial
to make stimuli comparable to those of the previous six experiments.
Two image-plane factors changed during the course of a trial: Lines
lengthened, and visual angles separating them increased in proportion
to their proximity to the projected station point. To enhance the depth
effect and to provide a reference to the horizon, converging lines were
placed just beyond and parallel to the ends of the four lines. These
mimicked the intersections of the floor with the walls, Thus all lines
looked as if they were luminescent stripes painted on the floor of an
otherwise dark hall. For an observer 1.83 m (6 ft) in height, this hallway
would be 30 m long and about 3 m wide, with 2-m-wide lines painted
across the width centered and orthogonal to the line of sight.? Figure
9.2 shows the arrangement of lines for four frames from each of two
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sample trials. Those on the left-hand side correspond to a flat plane,
and those on the right-hand side to one not flat, with line B below the
plane of the others by 0.1 eye height. In a continuous sequence the
stimulus on the right is easily seen as nonplanar as a result of the
motion parallax of the nonplanar element in rigid three-dimensional
relations with the other three.

One stimulus was presented on every trial. In each block of trials,
eight stimuli had four lines on a rigid flat surface and eight had three
on the floor plane and one either above it (moving forward and backward
faster than the other three) or below it (moving more slowly) by the
same amount, All viewers—SR, CB, and me—found the rigid inter-
pretations easy to see and for each trial indicated whether or not the
hallway floor was flat.

Unlike the first six studies, condition 1 did not have equal displace-
ments within a block. Instead, eye height differentials were held con-
stant, one of the four lines being either above or below the plane of
the others. Thus an eye height hypothesis is exchanged for the dis-
placement hypothesis of figure 6.5. All viewers began sessions with
eye height differentials of 0.10. Within the first block, eight trials pre-
sented stimuli with all lines at 1.0 eye height, four trials presented
them with three lines at 1.0 and one at 1.1, and the other four with
three lines at 1.0 and one at 0.9. For a viewer 1.83 m {6 ft) tall, these
differentials correspond to bumps and dips of about 14 ¢m (5.5 in),

Under condition 2, as in previous experiments, the amount of change
in cross ratio was held constant within a block. The secondary motion
of the planarity-violating line was as before, completely in phase with
the primary motion of the other lines. Thus across trials within a block
the noncoplanar line was not at a constant eye height above or below
the surface of the other three. All viewers began the first block of a
session with cross ratio changes of (.10.

Results
The data of condition 1, with equal within-block variations in eye
height, are shown in the left-hand side of figure 9.3. These results
suggest that the invariant of unordered eye heights was used by SR
and me but not by CB. The data of condition 2, with equal within-
block variations in cross ratio, are completely unlike those in any pre-
vious experiment, as seen in the right-hand side of figure 9.3. All
viewers showed reliable main effects across the four line positions, and
all these data are consistent with the idea that cross ratio is not an
omnibus perceptual invariant.’

Overall, the results support the following scheme: First, the cross
ratio is not generally used for the perception of planarity in optic flow
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Results of both conditions of experiment 7 for viewers JC, SR, and CB. The stimulus
was a flowing surface of support. The pattern shown here are unlike those of any of the
previous experiments and in particular do not support the cross ratio hypothesis. Instead,
an eye height hypothesis is better supported.
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generated during locomotion. Second, uniform eye height receives sup-
port as a functional invariant from two of the three observers, SR and
me. CB, on the other hand, presents a different pattern of data. His
results from condition 1 are consistent with the idea that the cross ratio
is used, but his results from condition 2 are consistent with eye height
information. Because variations in eye height and cross ratio changes
are always correlated, it is possible that CB used both. In fact, a detailed
analysis of trial-by-trial data revealed just that. In summary, SR and |
used only eye height information, and CB used both eye height and
cross ratio data.*

Observers” sensitivities to deviations from coplanarity are shown in
table 9.1. Normalized to the eye height of a 6-ft (1.83-m) person, all
three could detect deviations slightly less than an inch (2 cm) above
and below the hallway floor. The data of CB, of course, are confounded
by his use of cross ratio, and his slightly worse performance at larger
eye height differentials and slightly better performance at smaller ones
indicate regression toward the mean, which might be expected. Never-
theless, such bumps and dips are detectable even in the impoverished
displays used in this study. Of course, in real life we must be even
more accurate—typically attuned to discontinuities of less than a half
inch—to regulate footfall when walking or running. But rooms, fields,
and roadways contain much more information than these displays.
The differential richness of the real-world and laboratory situations,
coupled with the comparability of the sensitivities, renders these results
all the more impressive.

First Overview and a Conjecture

The results of experiment 7 sharply contrast with those of the four
experiments reported in chapter 7 and, by extension, the two in
chapter 8. In those studies there is strong evidence that cross ratio (or
a density analog) is used for the perception of flat, rigid surfaces
undergoing rotation. Here, in contrast, there is strong evidence from
two observers that the cross ratio is of no use at all and from the third
observer that it is useful only in conjunction with uniform eye height.®
Perhaps cross ratios are perceptually important only when a planar
object rotates. In experiments 1 and 2 (as well as experiments 4 and
5) the object plane rotated three times through 360°, and in experiment
3 it rotated through 90°, In experiment 7, by contrast, the plane rotated
hardly at all.® Other factors, of course, separate the display of experiment
7 from those of the previous studies, and these could have affected
the results as well. Nevertheless, experiment 8 was designed to test
for rotation as the precondition for use of cross ratios. Perhaps under
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Table 9.1 _
Signal Detection Analyses for Determining Nonflatness of Four Lines in
Experiment 6

Deviation from

floor in eye Deviation (in Standard
Viewer heights cm)y Mean d error
JC 0.050 8.4 2.82 0.12
0.025 42 1.82 0.15
0.013 . 2.1 0.98 0.21
0.006 1.1 0.52 0.25
SR 0.100 16.8 247 0.63
0.050 8.4 2.06 0.20
0.025 4.2 0.60 0.29
0.013 21 0.14 0.17
CB 0.100 16.8 2.52 0.36
0.050 8.4 1.79 0.50
0.025 4.2 1.01 0.26
0.013 21 0.90 0.20

a. Normalized to the height of a person 1.83 m (6 ft} tall.

conditions in which the plane does not rotate, rigidity judgments are
best done through analysis of displacement fields. Let me sketch how
coplanarity might be specified in a circularly translating plane.

Case 4: Specification of Coplanarity by Flow Vectors

The viewing situation of case 4 is shown in figure 9.4. The plane moves
in a circular path maintaining its face at right angles to the line of sight
to the center of the display screen. Thus planar elements trace out in
virtual space circles of the same size with common parallel tangents.
For a noncoplanar stimulus, shown in figure 9.4, one element is ad-
vanced. or recessed in virtual space but is held in rigid relation to the
others. Its path does not share tangents with the others. From the
viewer’s perspective, consider the following set of relations:

# = arctan[(r sin § + x}/{z — rcos §)], (9.5)

where § is the angle to the plane’s midpoint, 8 is the angle through
360° that the object has traversed (with 0° the point closest to the
observer), r is the radius of the circular path, z is the distance from the
viewpoint to the center of the circular path, and x is the lateral distance
outward of a particular element from the center of the plane.

As in case 3, this relation can be differentiated with respect to the
motion in depth, which in this case is caused by changes in angle 3.
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Figure 9.4

The geometry of case 4 (see figure 6.6), in which one element {C) is noncoplanar with
the other three (A, B, and D), at two times, ¢, and {,. The bold circle is the path of the
middle of the stimulus plane, and the other circles are the paths of each element. z is
the distance to the center of the circular path (underestimated for the purposes of this
figure), 4 is the angle between the line of sight to the center of the circular path (and
the center of the screen) to the element in question (in this case D), 4 is the angle around
the circular path, 7 is the radius of the circle, and x is the distarce of the element from
the center of the plane.

The relation 46/d8 can then be rearranged and a set of measures obtained
that can be used in an invariant, just as with case 3. Here, rather than
an ordering of eye heights constituting the invariant to be tested for
perception, it is the ordering of elements in depth. If elements lie on
the same plane, they are unordered and there is no motion parallax,
but if one lies closer or farther, they are always ordered in the same
way, yielding parallactic motions.” For simplicity’s sake, I call this a
planarity invariant.

Experiment 8: Cross Ratios, Flow Vectors, and Circularly Translating
Planes '

The purpose of this study was to explore case 4, where stimuli were
as much like those of case 1 as possible but without rotation. Four
frames from two such sequences of circularly translating stimuli are
shown in figure 9.5, with those on the left-hand side depicting planar
elements and those on the right-hand side, noncoplanar ones, Again,
the right-hand stimulus is easily seen as noncoplanar because of motion
parallax. Notice that elements are again end aligned, creating the strong
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Figure 9.5

Four frames taken from two sample sequences from experiment 7. The panels on the
left-hand side correspond to a rigid plane, and those on the right-hand side correspond
to a rigid stimulus with one element, the second from the left, noncoplaﬁar and closer
to the observer in virtual space.

impression of nonrigidity in noncoplanar stimuli. Two observers par-
ticipated—RM and me. In all other ways stimuli and procedures were
identical with experiment 1:* Under condition 1, the distance in virtual
space of the planarity-violating line was held constant within a block,
and under condition 2 the change in cross ratios was held constant.

Results

By collapsing across blocks, we can see that the results shown in figure
9.6 are quite similar to those of the previous experiment. In particular,
under condition 1 there is evidence, although not overwhelmingly
strong, that the ordered pattern of displacements (motion parallax) is
used in judgments of coplanarity, with both viewers yielding results
like SR’s and mine in experiment 7. Threshold performance for both
observers occurred when the planarity-violating element was closer to
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The results of both conditions in experiment 8, replicating those of experiment 7, for
viewers JC and RM. Again the cross ratio hypothesis is disconfirmed, and a hypothesis
concerning planarity and displacement vectors is generally supported. The stimulus was
a circling object.
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or farther from the others by 2% of the mean distance from the viewer.
Under condition 2 there was no evidence for the efficacy of the cross
ratio.’ Such results reinforce the idea that cross ratios (or density analogs)
may be useful for judgment of rigid coplanarity of rotating planes but
not for those that translate and keep their faces in the same orientation
toward the perceiver.

Perceptual Choice of Information

It is time to discuss the results of the first eight experiments, and to
begin to place their results within a general theory of how information
is used in perception. The latter part of this task is completed in chap-
ter 15 for all studies but is broached here to introduce main points.

An Affirmation of Invariance in Perception

Gibson championed the idea that invariants under transformation are
the key to understanding the perceived permanence of objects in the
world. The results of studies presented in the last three chapters are
entirely consistent with this idea. The cross ratio of four parallel, coplanar
lines seems to be used by perceivers for judgment of rigid flatness in
rotating and toppling objects, as shown in experiments 1 through 4.
Not only is this invariant used, but also its use seems uncontaminated
by other factors, such as the nonrelational cue of displacement in the
rigidity-violating motion of one of the four lines. Moreover, the most
elegant aspect of the cross ratio is that it stems from a theorem in
mathematics.

A different invariant is used in the perception of the flow of a surface
of support (case 3) and in norwotating planes in general (case 4). These
are not mathematical theorems, but they are equally well specified in
the optic array as ordered displacement patterns. Uniformity of dis-
placements is broken when a noncoplanar element is closer to the
perceiver than the plane of the other elements, and it moves faster
than those by a constant increment. If it is farther away from the
perceiver, it moves more slowly. Two of the three observers in experi-
ment 7 appeared to use eye height and no other information, not even
the change in cross ratio. A third seemed to use both eye height and
cross ratio. In experiment 8, both observers appeared to use vector
displacements, specifying planarity with little support for cross ratios.

Thus under none of the conditions of these eight experiments is there
strong evidence for the use of nonrelational cues, and in only one (CB
in experiment 7) is there evidence that anything other than one source
of information was used. Such results generally promote the straight-
forward nonelaborative view of perception that Gibson espoused.
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An Affirmation of Projective Geometry in Perception

Johansson, following Russell and Poincaré, championed the idea that
projective geometry is the key to understanding layout and its per-
ception.’® The results of the current set of studies are entirely consistent
with this idea. The invariance of the cross ratio is derived from a
theorem of projective geometry due to Pappas, and its apparent use
by the observers in experiments 1 through 4 provides the strongest
test of Johansson’s idea to date. In these experiments I demonstrated
that not only is projective geometry a good framework in which to
consider the permanence of objects in optic flow but also one of its
theorems is a perceptual “theorem,” at least some of the time.

Eye height, and deviations from uniform eye height, can also be
important to perception, particularly- when observing the optic flow of
a terrestrial surface. This idea finds support in the data of experiments
7 and 8, which in turn support the view that projective geometry is
relevant to perception. The flow of a noncoplanar element against a
nearby plane is entirely predictable from perspective transformations
of projected displacementis. These are not theorems of projective ge-
ometry because it is unlikely that they would be useful to mathema-
ticlans. But they reinforce Johansson’s idea that optic flow is well
captured by principles of station points and projective geometry. The
similarity of results in the last two experiments support the idea that
the nonrotational motion of a plane, regardless of its orientation to the
observer, is perceived in the same manner. And projective geometry
handily encompasses such results.

Underdetermination of Perceptual Process by Multiplicity of Invariants
Gibson consistently opposed the idea that information underdetermines
perception. He believed that invariants negated the need to go beyond
the information given to invoke some form of unconscious inference
or representational mediation. He also opposed Johansson’s deceding
principles on the same grounds, In an open lettet to him, Gibson (1970,
p. 78) said:

When you postulate rules for treating the stimulus data or principles
for decoding the data you are taking it for granted that the data
themselves are insufficient for perception.

But this statement misses the mark. Principles of decoding do not assume
that stimulus data are insufficient, only that the grounds for deciding
what information to use are insufficient. To understand the rationale
for the differences between Gibson and Johansson, we must pursue
the interplay between thresholds for information pickup and the mul-
tiplicity of invariant information.
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In The Senses Considered as Perceptual Systems, Gibson (1966} discussed
thresholds for registration of stimulus information. For him, however,
true threshold situations were rare in the real world because an active
explorer can always obtain more information by changing point of view
or manipulating an object. But if invariants are revealed under trans-
formation, then there is always the opporfunity for some transformations
to be too small to be revealed (discussed in chapter 5), for others to
be at threshold, and for still others to be beyond it, revealing fully
adequate information.

The present set of experiments manipulated this fact. At times dis-
placements of a rigidity- or planarity-violating line were above threshold

and easy to discern; at other times they were marginal and gave the

observer a vague sense that something might be wrong, and at still
other times they were so small as to promote sheer guessing. The
procedure was designed to keep performance near threshold, prototypic
of what Gibson discussed under the rubric of “causes of deficient per-
ception.” When the perceiver is presented with inadequate information,
Gibson’s (1966, pp. 303-304) most concrete suggestion was that

the perceptual system hunts. It tries to find meaning, to make sense

from what little information it can get.... The effort of appre-
hension may then be strenuous. With conflicting or contradictory
information the overall perceptual system alternates or compro-
mises . . . but in lifelike situations a search for additional information
begins, information that will reinforce one or the other alterna-
tive. ... If detection still fails, the system hunts more widely in
space and longer in time. It tests for what remains invariant over
time, trying out different perspectives. If the invariants still do not
appear, a whole repertory of poorly understood processes variously
called assumptions, inferences, or guesses come into play.

If the experimental displays discussed here bear no relation to reality,
then it might easily be suggested that vacillating results from viewers
are to be expected. I believe, however, that such a criticism cannot be
levied. Experiment 7, in particular, was lifelike in that it presented optic
information of the kind we need everyday. If we are not able to detect
small, near-threshold deviations from flatness, we are likely to wind
up on our faces, having tripped on-a nail, a piece of gum, or a small
hole in the floor. If the perceptual system must hunt in this lifelike
situation—sometimes finding one invariant, sormetimes another—then
Gibson’s scheme holds for search under conditions of inadequate in-
formation. Indeed, the data of CB in experiment 7 are consistent with
this view. But the remaining data in experiments 7 and 8 present a
more puzzling picture: RM, SR, and I hunted only in flow information.
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Such a strategy does not stem from information inadequacy, because
the experimental paradigms purposefully varied both sources of in-
formation over many blocks. Nor, moreover, does it stem from an
inability to pick up cross ratios, because the results of experiments 1
through 4 indicate strong sensitivity to these changes within the ranges
employed in experiments 7 and 8. _

In terms that are quite foreign to this enterprise, CB appears to have
followed a satisficing rule, whereas RM, SR, and I followed a certainty

_rule (Simon 1955). A satisficing rule suggests that the hunt for infor-
. mation continues until any adequate information is found, and the

quote by Gibson (1966, p. 303) indicates that he thought the perceptual
system would follow such a rule. A certainty rule, on the other hand,
suggests that viewers should stick with one source of information.

Decoding Principles

I have chosen to talk about perceptual rules from a perspective far
outside perception, so as to reintroduce decoding principles as proposed
by Johansson (1970, p. 73) in a new light:

I will stress that the visual system . . . contributes to the perceptual
outcome from the proximal stimulus flow. ... The efficiency of
the system is given by a set of rules for stimulus data treatment
(the programming of the visual computer, if you accept this met-
aphor), rules which work in an automatic way, but which result
in veridicality when the proximal stimuli are projections from mov-
ing rigid objects and/or a rigid environment in motion relative to
the eye. The principle of motion analysis . . . may be regarded as
a general summarizing formulation of these decoding principles.

Such rules have been shown experimentally to work in a blind,
mechanical way and leave basically nothing for subjective choice.
Therefore, I prefer to regard them as indicating a primary neu-
rological “wiring.” Their basic effect seems to be to filter out rigidity
in space.

I contend that the use of ordered displacements rather than cross
ratios in the last experiments is an example of strategic but unconscious
choice of one decoding principle over another. Cross ratios filter out,
in Johansson's sense, rigid flatness from nonflatness or nonrigidity, and
displacement ordering filters out rigid flatness from nonflatness.

Invariants of Configuration and Flow

Why does the human visual system choose among equally available
invariants? Any answer here must necessarily be premature, but let
me offer a possibility. The cross ratio is an invariant of configuration.
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That is, foremost in its calculation are the relative positions of elements
on a plane, irrespective of planar motion. Measurement at any frozen
instant in time suffices, so long as measures across time can be compared.
Thus, in principle, no motion is essential to the display, only separate
points of view. As discussed at the end of chapter 1, the cross ratio
fits snugly within the computational approach of discrete points and
views. The ordered displacements of eye height and planarity discussed
in experiments 7 and 8, on the other hand, are invariants of flow. Here
relative position is important, but most crucial is how that information
combines with instantaneous displacements. This fact dovetails nicely

with another approach in machine vision—that of discrete points and

displacements.

Invariants of flow might seem inherently more complicated than
those of configuration. We should not make the mistake, however, of
assuming that what is simplest to express in equations is simplest for
the visual system; Marr (1982), for example, suggested that compu-
tational theory ought to be independent of algorithm.

But why were cross ratios apparently used in the earlier experiments?
Again, answers that can be offered at present are without any real
force, but I suspect rigidity provides the key. In experiments 1 through 6
nonplanar stimuli: could be seen only as nonrigid, whereas in experi-
ments 7 and 8 nonplanar stimuli could always be seen as rigid. The
particular style of nonrigidity employed broke up ordered displacement
patterns, Perhaps it did so in such a way as to render them less useful
than they might ordinarily have been. This view does not seem par-
simonious because it suggests that the visual system uses different

algorithms for assessments of rigidity and nonrigidity. Yet, at base, this

may be what decoding principles are all about.

Second Querview

One explanation for the use of different invariants at’ different times
stems from principles of decoding, and I believe that this concept has
been misunderstood. In particular, I think that Gibson’s view of decoding
principles is incorrect: Johansson’s decoding principles do not assume
that information is insufficient in the optic array. Their necessity is due
to quite the opposite state of affairs: Data in the optic array are too
rich for the perceptual system to operate by invariant pickup alone.
Invariants underdetermine perceptual process because, as demonstrated
in the experiments of this chapter, there can be at least two, perhaps
many more, invariants that specify the same thing: It would appear
that invariants are relatively cheap in the optic array. They may be
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available in many forms, and some may be more informative than
others at different times and in different places.

In the situations studied, the visual system appears to choose auto-
matically which source of information, ordered displacements or cross
ratio, to use. To me, the choice seems closed to introspection or conscious
deliberation, and it is clear that individual differences occur. The ne-
cessity of choice implicates principles of decoding and in turn has
ramifications for considerations of direct and indirect perception. But,
again let me shy away from discussion of this topic until still more
data are gathered. I return to classes of perceptual theories in chapters
14 and 15. What I discuss next is another type of flow, this time generated
by a moving observer. Again, multiple sources of information are avail-
able, and again the visual system seems selective. Here, rather than
an approach of discrete points and views or of discrete points and
displacements, a third machine-vision approach is used—that of dis-
placement fields.
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Ways of Wayfinding

In the previous chapter I began to discuss the optic flow generated by
an observer moving through the environment. Here [ expand this idea,
addressing a fundamental problem for vision: Does dynamic information
in the optic array specify the direction of an observer’s movement? The
answer, [ suggest, is an unequivocal yes, but how we get there is a
long and twisted tale, encompassing the next four chapters. Prazdny’s
admonition, given as the introduction to this part, applies equally to
psychologists, philosophers, and computer scientists: We must proceed
with care and not accept carte blanche any time-honored analyses.

My approach is three pronged. First, I briefly present facts on the
accuracy needed to direct viewers’ locomotion. I know of none presented
previously in the perception literature, and my presentation provides
a guideline for assessment of research done on wayfinding accuracy.
Second, I look at various proposals for determining viewers’ direction,
starting with the focus of expansion and then considering several others.
Data from all previous experiments seem to find all present concepts
wanting. They typically do not show the accuracy needed for wayfinding
without danger of personal injury. Third, I embark on a somewhat
new path, direction finding based on motion parallax. This last enterprise
is the most comprehensive and takes us through chapters 11, 12, and
13. But first, consider the accuracy needed for wayfinding.

Accuracy in Wayfinding

As pedestrians we would bump into many more stationary objects than
we already do were we not able to judge our direction of locomotion
within 5 to 10° of visual angle. Such a requirement, however, is not
likely to strain the system, Instead of considering modal locomotion
as dictating accuracy needs, we should probably consider needs more
toward the limit of our ability to move through space. In particular, as
runners we would be in grave danger were we not able to judge direction
within 1° of visual angle. Such an estimate is based on the physics
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and geometry of turns, on footfall modulation time, and on reaction
time.'

Interestingly, this same requirement is found in other settings. For
example, safe driving at highway speeds entails judgments of about
1°; safe landing of conventional aircraft requires at least 1° accuracy,
but here it is measured vertically so that the craft’s wheels touch down
at the correct point; and downhiil skiing also needs an accuracy in this
range. Assumptions underlying these estimates ‘'vary,? but it appears
that technology, society, and recreation have converged with evolution
toward the accuracy demanded in directional judgments. And this one-
degree requirement is not likely the absolute limit: World-class sprinters,

skiers, and race car drivers, as well as pilots landing on aircraft carriers, -

surely need even greater accuracy—at most half a degree and probably
a lot less. In general, then, we should distrust any experimental evidence
that does not indicate a wayfinding ability in the range of 1° or better.
But how do we guide our movement with this accuracy? The first and
most prominent proposal is the focus of expansion.

The Focus of Expansion

Independently, Gibson (1947, 1950) and Calvert (1950, 1954) proposed
that we know our way from the location of a fixed point in the changing
optic array. Early on, Gibson et al. (1955) called this fixed point the
focus of radial expansion; later, he called it the center of outflow (Gibson
1979), and Calvert simply called it X. But most researchers use a version
of the initial term—the focus of expansion (Gibson 1955)—and I follow
this usage. The focus of expansion is shown schematically in the upper
panel of figure 10.1. As indicated in the lower panel, this rendering is
like Alberti's window, with the observer carrying the planar projection
surface forward. According to both Calvert and Gibson, all motion
radiates from this point. More concretely, this radiation occurs when
changes in relative positions of objects in the world are projected to a
moving point of observation and when the projectors are intersected
by a surface. All changes on that surface can be described as vectors,
or flow lines, and these purportedly point in a direction opposite the
focus of expansion. Because analyses typically assume that the projection
surface moves with the observer, I call it Alberti’s windshield.
Calvert dubbed this general scheme for visual guidance the “para-
foveal streamer theory”; Gibson (1979) later called it “streaming per-
spective.” It should be clear, however, that such streamers may be
equally if not more important in the peripheral visual field, beyond
the parafovea. As | describe in chapters 11 and 12, the length of these
streamers—or more properly vectors—is determined by three factors:
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Figure 10.1
I a viewer is looking in the same direction as he or she is moving, as indicated in the
upper panel, there is an optic focus of expansion. The lower panel shows that this
representation is like Alberti's window, which moves with the observer. I call it Alberti’s
windshield.

the instantaneous distance of a given object from the viewer, its in-
stantaneous angle from the direction of movement, and an underlying
mapping assumption. But this gets us too far ahead of our story. Vector
length is not critically important to either Calvert’s or Gibson’s thesis:
We are told simply that all vectors, regardless of length, point away
from the focus of expansion. And according to Gibson (1958, p. 188),
“to aim locomotion is to keep the center of flow of the optic array as
close as possible to the form which the object projects.”

The great redundacy of information in this scheme is impressive.
There are individual vectors associated with every part of every object
in every location, and all of these, when extended backward, intersect
at the same point. They make direction of movement, or so the theory
goes, implicit, regardless of where an observer is looking, If an observer
happens to be looking backward rather than ahead, it is claimed that
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the observer finds a complementary focus of contraction diametrically
opposite the focus of expansion.

The simplicity of this proposal, especially as formulated by Gibson,
attracted the attention of psychologists. General acceptance is indicated
by the appearance of this scheme in many textbooks and articles on
perception.? The extent of acceptance, however, is curious, given the
lack of empirical support. In fact, if anything, almost all evidence is
against the utility of the focus of expansion for visual guidance. The
various studies, however, are not without their own problems. In several
cases nearly unavoidable problems in experimental design or in the

conceptualization of the optics of the situation have made the counter-

evidence less impressive than it might have been. Because the difficulties
with each experiment enlighten us to the problems in specifying optic
flow and because their strengths denote problems with the focus of
expansion, it is worth considering each in detail.

Utility of the Focus of Expansion: A First Pass

When the focus of expansion is a spot on a vertical wall toward
which a man walks, the flow is zero at that spot and increases
symmetrically around it, if we disregard eye movements. When
he approaches it at a slant, the flow is correspondingly asym-
metrical, the velocity becoming greater on the near side.

With this statement Gibson (1950, p. 128) set the stage for more than
three decades of research. And unfortunately, for reasons that will
become clear, that stage was not in the theater of interest. The prototypic

situation became that of an observer moving toward a (1) vertically:

oriented, (2) planar surface, (3) generally at right angles to a (4) linear
path of movement. I enumerate these because all four have contributed
substantially to the style of research done and all lead to oversimpli-
fications and misunderstandings of the information available to a moving
observer in a normal environment. One problem, oddly enough, is that
it promotes an “air theory” rather than a “ground theory” approach
to optic flow, as Gibson (1950) would have otherwise intended: Dis-
embodied visual patterns are considered at an unknown depth rather
than as interrelated and occluding patterns among objects along the
ground plane.

Carel (1961)

Carel was among the first to conduct experiments on optic flow. In a
technical report, he presented a series of experiments that employed
a flight simulator of the kind used in flight training before the advent
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of computer-graphics technology. The apparatus simulated linear

-movement toward and impending collision with a surface oriented at

various angles. Among other results, Carel found that the accuracy in
locating the focus of expansion depends on two factors—observer speed
and distance remaining to the point of impact. In general, the faster
one travels and the nearer one is to impact, the better one’s judgments
are.

Consider an example. If a viewer is running at a velocity of 5 m/sec
toward a wall visible from 100 m distant, Carel’s results suggest that
the viewer can correctly judge the point of impact within 4°, or about
two thumb widths. Carel spoke of the distance/velocity ratio as being
critical. Thus 100 m divided by 5 m/sec yields a distance/velocity ratio
of 20 sec, the time until contact with the surface, Lee (1976, 1980b)
later promoted this same information. Consider next some other ac-
curacies at this same speed but different distances. With the plane of
impact 50 m distant and a time to contact of 10 sec, the runner’s
accuracy increases to 2.5°, and at 10 m and 2 sec it further increases
to 0.53°, These datasuggest that runners are not very accurate in judging
direction of movement unless objects along the path of movement are
relatively near and collision imminent. Such accuracies seem barely
sufficient. for running and driving a car. Moreover, it is not even clear
that the focus of expansion was being used by Carel’s observers. Dis-
appearance rates of textures off the edge of the display is another source
of information available to them, but not necessarﬂy to drivers and
certainly not to runners, ‘

Llewellyn (1971) '

The first study of aim-point accuracy in mainstream psychology did
not appear until a decade after Carel’s study. Llewellyn conducted a
series of experiments using velocities and distances consistent with the
more distant (or slower) end of Carel’s continuum. Llewellyn found
that observers cannot determine their way better than to within 6° of
visual angle. His:apparatus was a shadow caster, much like that used
by Gibson (1957a). With it Llewellyn back-projected arrays of lines
and geometrical shapes onto a view screen. He generated flow by
smoothly increasing the distance of the transparent textured surface
from the image plane while leaving the image plane at a uniform
distance from the observer and light source. The optics were generally
correct for linear vection—the perception of self-movement through
the environment along a straight line—properly mimicking the increased
size ‘of textures when an observer approaches them. Nevertheless,
Llewellyn’s observers were notably poor at pomtmg out their direction
of movement.
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One reason for their poor performance may have been that the stim-
ulus array was a circular screen of only 15° radius. Although it is
difficult to present wide-angle dynamic stimuli to a viewer without
systematic distortion, we could argue that, because the optic array
normally available to both eyes is an ellipsoidal cross section of a sphere
about 180° wide by about 120° high, Llewellyn’s exclusion of more
than 95% of the visual field may have induced poor performance.
Almost all peripheral “streamers” were excluded from his display.
Moreover, narrow-field displays do not give an observer a good sense
of being “in” the space depicted (Hatada et al. 1980). This criticism
can be levied against almost all studies of optic flow. I return to the

possible influence and impact of peripheral vision in chapter 11, where

I consider detection thresholds for movement at various eccentricities,

Johnston et al. (1973)

In response to the problem of a narrow field of view, Johnston et al.
presented their viewers with spherically projected dynamic images as
large as 100° by 160°. Their displays simulated approach to a plane
with final times to contact of 42.5, 21.5, 11, and 0.5 sec. All displays
were computer generated on a flat screen, filmed frame by frame, and
projected through a fish-eye lens into an amphitheater with a spherical
screen, such as that found in a planetarium. Again, monocular optics
were correct for an approach toward an extremely large and flat wall.
Surprisingly, however, even in this full-field situation observers could
not locate the focus of expansion better than to about 10°. Moreover,
there was little effect of time to contact. Observers had a mean error
of 11° for times to contact of 42.5 sec, and 8° for 0.5 sec—a scanty
improvement out of scale with that predicted by Carel.

One reason for poor performance no doubt stems from the limited
computer capacity then available to generate dynamic displays. Because
it is more economical to draw points rather than lines and other shapes
in a vector-graphics system, Johnston et al. generated dots that did not
expand as the large plane loomed toward the viewer. Thus an important
source of information for movement toward objects—increase in size—
was absent. Perhaps the display looked less like the optic array during
movement than like the explosion of elements at a fixed depth. If so,
we would hardly expect the task to measure observers’ ability to de
termine their way. _ '

Regan and Beverley (1982)

More recently, Regan and Beverley found essentially the same result:
Their viewers could not determine their direction better than to within
109. They presented observers with vertical sine-wave gratings that
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mimicked a line of fenceposts planted at right angles to the line of

“ movement. These posts moved and expanded under computer control

in simulation of linear vection. Like Llewellyn’s display, Regan and
Beverley’s was relatively small;. 16° by 20°, and insofar as this factor
matters, its force is equally denigrating here. There are, however, many
other important aspects of the Regan and Beverley study, so I return
to it several times.*

Whatever the import of the size of the display and growth in size
of textures, all three studies after Carel’s used the type of experimental
stimuli outlined by Gibson. The simulated environment consisted of a
vertical textured plane, toward which one moved orthogonally along a
linear path of movement. Such displays are not representative of what
we see every day. Objects in the real world are not commonly coplanar,
and if they are, that plane is rarely at right angles to the line of move-
ment. In addition, our paths of movement are rarely linear. More often,
we move in curved paths around corners and, even in those cases in
which we intend to go straight, sideways and vertical oscillations during
gait are unavoidable,’ What follows, then, is a discussion of experiments
that present observers with stimuli without the first and third of these
limitations. They, like Carel, present nonvertical planes approached at
obligue angles. I defer discussion of the second difference (multiplanar
stimuli) until chapter 12 and of the fourth (nonlinear approaches) until
chapter 13.

Kaufman (1968) and Ahumada (unpublished)

After Carel, a few studies did obtain direction-finding performance
considerably better than 10°. Kaufman, for example, simulated landing
on an aircraft carrier using a back-projection technique similar to Llew-
ellyn’s. Kaufman chose glide paths that were small and within a few
degrees of being parallel to the surface, 3 to 6°, and in a range ap-
propriate for landing on a carrier. He found that one observer yielded
a 1.5° error in locating the point of impact. Simulated speed was quite
high, about 60 m/sec, and the final distance to the carrier deck was
about 90 m. With a time to contact of about 1.5 sec, the accuracy is
about that predicted by Carel. However, Kaufman noted that, because
of problems in the experimental design, this value is probably an
overestimate. He also reported that even this is too poor for successful
landing.

By far the most complete study of simulated aircraft landing is Ahu-
mada’s. His experimental situation is much like Kaufman’s but with
computer-generated graphics displays. These present a linear array of
lights, such as pairs of landing lights on either side of a runway at
night. The array filled 15° of visual angle measured vertically. Glide
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paths were varied from 2 to 12°, where the former is shallow and the
latter much too steep for conventional landing. Trials simulated a
2-sec flight that ended at one of four times, from 30 to 3.75 sec before
touchdown. Viewers indicated the location of their aim point—the
point of impact with the runway—at the end of the trial by moving a
cursor to the point on the screen where they thought they would touch
down. During cursor placement, the last frame of the landing sequerce
remained on the screen. In general, the shallower the glide slope and
the closer to touchdown the trial simulated, the more accurate observers
were. Aim-point accuracy varied from 0.5 to 3.0°, depending on con-

dition. Again, contrary to Carel, there was little effect of time to contact.® ,

What is not clear in Ahumada’s study, as before, is whether or not
viewers were using the focus of expansion. Although viewers sat in a
darkened room, they probably could see the edges of the display. These
would form a frame within which movement of the lights on the screen
could be seen. Pilots often use such reference frames when landing,
lining up a speck on the windshield with the aim point on the runway
as they might use a gun sight (Langewiesche 1944, Hasbrook 1975).
This idea of reference frames arises again in chapter 12 when motion
parallax is discussed.

Warren (1976) and Riemersma (1981)

Not all wayfinding studies have used experimental situations of or-
thogonal or oblique approach to a plane. Warren, using a display of
53° width, explored a situation like that of driving a car, where an
observer is not approaching the plane but moving over it. Viewing
computer-generated displays, his observers could locate their direction
of movement to within 5°, Because of problems in his response measure,
he suggested that this is probably an underestimate of viewers’ ability
to judge direction of movement in his displays.”

Riemersma used a display more sophisticated than Warren’s. Ob-
servers sat in a mock-up of a car and viewed a large screen. They
determined whether or not a film clip of computer-generated edge lines
or random dots simulated forward movement alone or forward move-
ment with a slight turn. Using 2.5 sec as a standard driver response
time (Road Research Laboratory 1963), Riemersma'’s participants yielded
above-chance accuracies at about 1° of visual angle for speeds of 30
and 120 km/hr. This is the only result other than that of Ahumada
that seems appropriate for the task of wayfinding. But again, it is not
clear that the focus of expansion was used. Motion parallax through
the windshield and, in the condition with road edge lines, linear per-
spective could easily have aided task performance.
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First Overview

"The focus of expansion appears to be difficult for perceivers to find.

Most experimental results have failed to support the idea that viewers
can accurately discern this information, as opposed to others, in optic
fiow.® By extension, it would appear that it is sometimes difficult to
determine where one is going, But this is implausible: Runners, drivers,
pilots, and skiers must direct their movement within 1° of visual angle.
Another possibility is that the focus of expansion is not generally useful
for directional guidance. This idea is supported indirectly by coarse-
grained behavioral data showing that moving observers rarely even
look in the direction they are going. Schiff (1980, pp. 254-255) noted:

Studies performed on winding roads and utilizing head-mounted
cameras have determined that the driver looks primarily at center
lines and road edges while performing vehicle turns. All this sug-
gests rather variable sampling of information regarding the en-
vironment and relation of the self-envelope to it, but indicates that
flow information (optical motions and gradients) . . . and not the
f.o.e. [focus of expansion] itself, are used for much vehicular
guidance.

These results also suggest that important information for wayfinding
Hes off the path of movement. But the focus of expansion dies hard,
and discussion has not ended with these experimental and behavioral
data. Over the last few years new arguments and analyses have been
presented. One such discussion is an exchange between Torrey (1985)
and Regan (1985) over the distinction between optic and retinal motion.

Utility of Two Foci of Expansion: A Second Pass

Results like those cited so far led many of us to doubt the utility of
the focus of expansion as information for directional guidance. Regan
and Beverley (1982) offered a logical reason for its inadequacy: They
demonstrated that during approach to a single plane, the situation
chosen by Gibson to discuss, there is almost always a focus of expansion
that corresponds to where we are looking, not where we are going.
Because we always look at objects when we move, an object under
scrutiny does not move from the fovea. The eye rotates to follow it
during our movement. With this object fixed in position on the retina,
all other textures necessarily flow away from it as we move forward.
This pattern, demonstrated in figure 10.2a, occurs even if observers
are not moving directly toward that object. What is important to re-
member, however, is that this representation of flow is two dimensional
and measured on the retina.
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(a) Vector plots on Alberti’s windshield of the optic displacements for an orthogonal
approach to a textured plane, with the dots representing fixation points. All vectors point
outward, away from the fixation, which serves as a focus of expansion. (b) Geometry
of the two situations at two times during approach to the plane, where at ¢, the observer
is 7% closer to the plane than at ¢,. The top panels show vector plots and geometry for
an observer looking exactly in the direction of movement, and the bottom panels show
them for looking 15° off to the left-hand side of the path of movement at #, and holding
that fixation.

Regan and Beverley’s analysis, as it turns out, is true only under
restricted conditions. Such retinal flow occurs only when the eye is
fixated on a spot on a textured plane, not in a cluttered environment.
Moreover, it occurs only when an observer approaches a plane at certain
angles and for certain lines of sight. For example, when an observer
is moving directly toward a plane, outflow occurs only when the ob-
server is looking within 45° of the aim point. It does not occur, as
shown in figure 10.3, when the observer is looking farther outward at
steeper angles. There the flow develops the interesting characteristic
of having the fixation point become a focus of contraction.

Regan and Beverley’s analysis, and my extension of it, is damaging
evidence against the efficacy of the focus of expansion. There is, how-
ever, a retort. The claim is that this analysis fails to distinguish retinal
flow from optic flow. The focus of expansion that Regan and Beverley
discuss is on the retina, dependent on where the eye is looking. On
the other hand, the focus of expansion of Calvert and Gibson is in the
optic array. Perhaps there is some way to disentangle the two and to
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Figure 10.3

The top panel shows the vector plot on Alberti’s windshield for an orthogonal approach
to a plane when looking at a spot that is initially 45° to the left. The middle and bottom
panels show the geometry of the situation. Notice that the fixation has become a local
focus of contraction. Although not shown, the vectors in the top panel should also be
slightly curved, a characteristic known as curl,
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demonstrate that the optic focus of expansion is useful while acknowl-
edging that the retinal focus is not. This is the view taken by Torrey
(1985) and tacitly approved by Regan (1985). However, I do not agree.
I contend that the focus of expansion in the optic array is a fiction of
a particular choice of coordinate system for the spherical projection
surface. | demonstrate in chapter 11 that Regan and Beverley were on
the right track; they simply were not radical enough. But before be-
ginning that discussion, the final section of this chapter outlines two
other proposals for direction finding.

Alternatives to the Focus of Expansion

Ocular-Drift Cancellation

Llewellyn proposed a drift cancellation procedure for visual guidance.
This drift parses two ways. The first is a drift of one object against
another in the optic array, also known as motion parallax and discussed
in the next chapters. The second, less important to Llewellyn’s thesis
but implicit in Calvert’s thesis, is ocular drift. On this view, the observer
moves through the environment and fixates various objects at varying
locations. While locomoting forward and looking somewhat off to the
side, the observer must rotate his or her eyes (or head) in order to
maintain fixation on an object. If we assume that there is no head
rotation, then only when an object is along the path of movement is
there no ocular drift. This drift must be noticed through monitoring
eye position dictated by efferent commands. Saccadic corrections are
then made to a new object until no drifts are noticed. Once ocular
movements have been canceled, the observer knows the direction of
locomotion by his or her direction of gaze.

This is an eminently sensible proposal. Unfortunately, Llewellyn’s
data suggest that observers do not register either eye movements or
eye position sufficiently well to perform this task. That is, observers
cannot use it to determine direction to better than about 6°. Finally, a
picky point: Ocular rotations are not optic information. Instead, eye
movements are part of the effector system and are extraoptic. Thus,
even if ocular-drift cancellation worked for direction finding, it would
still not tell us what optic information specifies one’s direction. Despite
these criticisms, this scheme is similar to one I discuss in chapter 13,

Magnification in Retinal Flow

A completely different source of information was proposed by Regan
and Beverley (1982)—the point of maximum rate of magnification. Their
interest in it stems, in part, from their previous neurophysiological
work. In general, the point lies between the aim point and the point
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on the plane nearest the observer.? Thus it does not specify the direction
of movement; instead, it indicates only the direction that observers
must shift their gaze to find it. Its location is schematically shown in
figure 10.4. The top panel shows where the point would lie if the plane
were approached at an oblique angle, fixating a point off the line of
movement. The twelve functions in the lower panel correspond to the
twelve locations along the path of approach.

Three problems make this formulation less than completely useful.
First, from a distance the point of maximum rate of magnification is
surrounded as broadly as 30° by other points with similar magnification
rates. Thus it seems unlikely that the point could be discerned with
accuracy until the observer is near impact. Second when moving parallel
to a plane, as most terrestrial and airborne animals typically do, this
point completely disappears because its equation of flow degenerates.'®
Third, Regan and Beverley generated optic flow by using an exponential
algorithm to simulate the orthogonal approach of an observer toward
a line of fenceposts. Two outcomes of such an algorithm are shown in
the bottom panel of figure 10.4, where exponents of 1.0 and 0.7 for
the velocity of elements are plotted against eccentricity in the optic
array. Shown in the same panel as the dotted line is the true velocity
of such fenceposts, revealing serious discrepancies in the periphery.
Nevertheless, within 20° (the width of Regan and Beverley’s display)
the match is quite good, especially when the exponent is 1.0.

Putting this reanalysis aside, I also note a terminological problem—
the use by Regan and Beverley and by Gibson of the term magnification
in descriptions of optic flow. This term from telescopy does not generally
apply to flow; it is almost always improperly used, and in its use are
seeds for misunderstandings.

Against Magnification in Optic Flow

“Expansion” and “magnification” are kindred terms, “Expansion’ de-
notes spreading out and “magnification”” enlargement; “expansion”
does not have the mixed blessing of connoting optic instruments,
whereas “magnification” clearly does. Because the eye is an optic in-
strument, “‘magnification”” would seem to be a word well suited to
descriptions of optic flow. This fact has almost certainly promoted its
use. For example, Gibson (1979, p. 227} said:

An invariant feature of the ambient flow is that one hemisphere
is centrifugal and the other centripetal. Outflow entails magnifi-
cation, and inflow entails minification.

Gibson and many others'! have used “magnification” to describe the
effect when an observer moves toward an object. However, this choice
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Examined in the top panel is Regan and Beverley’s (1982) proposed method of direction
finding, The method locates the point of maximum rate of magnification in the vector
field during nonorthogonal approach to a plane, with maintained fixation point to the
left of the point of impact, yielding the relative magnification patterns shown. Peaks in
the functions correspond to points of maximum rate of change of magnification. In the
bottom panel are the relative velocities for two exponential flow patterns in their simulations
and the flow (dotted line) for actual orthogonal approach to a plane. After Priest and
Cutting (1985).
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Figure 10.5

Five objects and paths of approach for consideration of magnification. The top panel
shows the initial views of the objects and the fixation points; the bottom panel shows
an aerial view of the geometry of the situations. Table 10.1 gives the visual angles
involved at the beginning and end of observer movement.

of term, like those of “convention’” and “cue” discussed in earlier
chapters, is unfortunate. “Magnification” means to enlarge equally along
¥ and y axes of the projection, and it is in this technical sense that a
problem emerges. Magnification occurs with a zoom lens of a camera,
but such optics are quite different from those for the approach to a
plane (Hochberg 1978b).

True magnification in the optic array is extremely rare. Aside from
looking through microscopes and telescopes, the only cases where it
occurs are during the linear approach to the center of the equilateral
face of an object that is orthogonally aligned to the path of movement
and where that object is a perfect sphere, regardless of the path of
locomotion, a situation considered by Regan et al. (1979). In all others,
as the observer approaches an object, projective distortions increase
the size of some dimensions more than others. This is a result of the
spherical geometry and polar projection of the optic array.’* To pursue
the case against magnification, consider the angles subtended by objects
aligned in different orientations from different paths of movement, as
shown in figure 10.5. The particular angles involved are given in table
10.1. In each of the five cases, for simplicity's sake, I consider regular
quadrilateral surfaces and how they project to the observer approaching
them,
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Table 10.1
Five Cases Demonstrating Increase in Optical Size (in Degrees} with an
Observer's Approach

Parameter Case 1 Case 2 Case 3 Case 4 Case b
Initial width 5.72 2.86 2.86 4,09 5.60
Final width 28.07 14.25 14.25 26.19 17.58
Initial height (left) 5,72 11.42 11.30 5.20 5.60
Final height (left) 28.07 53.13 45.00 18.44 24.71

Initial height {right) 5.72 11.42 11.30 6.35 5.60
Final height (right) 28.07 53.13 45.00 50.50 19.56

Initial height-to-width  1:1 3.99:1 3.95:1 1.27:1= 1:1°
ratio 1.55:1* 1:1*
Final height-to-width  1:1 3.73:1 3.16:1 0.70:1*  1.4IL1°
ratio 2.74:1*  1.11:1°
a. left edge

b. right edge

Case 1 is a control, used for comparison purposes, in which true
magnification occurs. The observer’s eye moves toward the middle of
the face of an object. If that object is 1 unit square and if the observer
is initially 10 units away, both the horizontal and vertical visual angles
are determined by Eq. (2.1): & = 2-arctan(y/2z), where y is the projected
extent of the object orthogonal to the line of sight and z is its distance
from the observer. Initial visual angles are 5.72°, If the observer then
moves forward by 8 units, the height and width of the object are 28.07°.
Given that height and width are the same in initial and final positions,
magnification has occurred.

But now consider the four cases in figure 10.5 in which enlargement
is not uniform. Case 2 presents an object 2 units in height and 0.5 unit
in width. Again, from a distance of 10 units the initial height is 11.42°
of visual angle and the initial width, 2.86°. Although the real-world
proportions of this figure are 4:1, the distortion of polar perspective
reduces that ratio to 3.99:1. This is a small effect, at least for this
case and this viewpoint. But when the observer moves forward

8 units, the height becomes 53.13°, the width 14.25°, and the ratio

reduces to 3.73:1,

Case 3 is similar to case 2 but with the point toward which the
observer’s eye is moving displaced to the middle of the top edge of
the object. Calculations differ from those using Eq. (2.1). The initial
width of this object is, as it was before, 2.86°; its height has changed
somewhat to 11.30°, and the height-to-width ratio is 3.95:1. When the
observer moves to 2 units from the object, the width is again the same,
14.25°, but its height is now 45.0°, yielding a ratio of 3.16:1.
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Case 4 presents a situation similar to that of case 1 but with the face
of the object tilted at 45° to the line of movement, with the left edge
farther to the right. The angular width of the object is uniform. From
the center of the figure to the left edge is 1.84°, and from the center
to the right edge is 2.25°, for a total width of 4.09°. The height of the
left edge is 5.20°, and of the right edge 6.35°. The ratio of these two
is 1.22:1, right edge to left. When the observer moves forward, these
values increase. But as before, these vaiues do not increase equally.
The uniform width of the figure is now 6.72° from the center to the
left edge and 19.47° from the center to the right edge, for a total of
26.19°. A dramatic change occurs in the relative heights for left and
right edges. The left edge is now 18.44°, whereas the right edge is
50.509, for a ratio of 2.74:1.

Case 5 employs an object of the same size as that in cases 1 and 4,
but this time the movement path is off to the side so that the observer
passes the object 2 units to the left of the object’s left edge. Because
the initial point in the path of movement is a little over 10 units away
and because the object is oriented so as to be at a right angle to the
line of sight, the initial proportions are similar to those of case 1—5.6°
by 5.6°. When the observer moves forward the same distance as in
previous cases, the projection changes considerably. The final width
is 17.58°, the final height of the left edge (closest to the observer) is
24.71°, and that of the right edge is 19.56°. The height-to-width ratio
for the left edge changes from 1:1 to 1.41:1, and that for the right edge
from 1:1 to 1.11:1.

The purpose of this five-part exercise was to demonstrate that polar
projections of objects near and far do not generally allow us to speak
of magnifications.”” To keep discussions of optic flow unclouded by

error, we should not use the term.

Second Querview

After initial forays into the study of the focus of expansion, Regan and
Beverley argued that it is not useful to visual guidance. They offered
proof by demonstration, showing that the focus of expansion exists
wherever one looks when approaching a plane. My own analyses placed
further limitations on the concept. But Torrey countered by trying to
distinguish retinal-image analysis, like Regan and Beverley’s, from optic
analysis. The hope was that the optic focus of expansion could still be
saved. One of my purposes in chapter 11 is to show that it cannot.
Two other schemes for wayfinding were then discussed. The first
was Llewellyn’s ocular-drift cancellation theory. In'it the observer scans
objects in the real world, detects ocular rotations resulting from con-
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tinued fixation on an object off the path of movement, and saccades
in the reverse direction until ocular drift is canceled. Such a scheme
has no evidence in its support, although it seems sensible and is related
to an analysis of visual function that I discuss in chapter 13. The second
scheme was proposed by Regan and Beverley and centered on locating
the point of maximum rate of magnification in the optic array when
approaching a planar surface. Several problems of locating this point
were discussed, and it does not seem generally useful. And finally, the
concept of magnification was examined, as it might reflect facts of optic
flow, and found wanting. Magnification occurs with the use of extraoptic

lenses but not without them, except in seriously circumscribed con-

ditions, In summary, the proposed tools for wayfinding are inadequate.
What is needed is a reanalysis of the changing optic array, which is
the topic of chapter 11, and a new tool for wayfinding, the topic of
chapters 12 and 13.

11
Multiple Representations of Optic Flow

Optic flow is the foundation of vision: Every time we move, the pro-
jections of the world change with us. Vision subserves our activity,
telling us where we are {Lee 1980a). Such arguments, however, are
often extended to state that the focus of expansion is the centerpiece
of optic flow, and therein lie some difficult problems. Data reviewed
in chapter 10 suggest, at best, that the focus of expansion is not always
easy to find, Understanding its problems is contingent on understanding,
the plurality of representations for optic flow at a moving point. What
follows in this chapter is an exploration of that plurality.’

Mapping Optic Flow

If the eye moves through the environment, the optic array changes.
To study this change, we must consider displacement vectors that result
from this movement. Helmholtz {1866, p. 295} provided a qualitative
analysis of them: ‘

In walking along, the objects that are at rest by the wayside stay
behind us; that is, they appear to glide past us in our field of view
in the opposite direction to that in which we are advancing. More
distant objects do the same way, only more slowly, while very
remote bodies like the stars maintain their permanent positions in
the field of view, provided the direction of the head and body
keep their same directions. Evidently, under these circumstances,
the apparent angular velocities of objects in the field of view will
be inversely proportional to their real distances; and, consequently,
safe conclusions can be drawn as to the real distance of the body
from its apparent angular velocity.

The top panel of figure 11.1 shows one representation of flow. It is
afamiliar diagram from Gibson (1966, 1979). Unlike Alberti’s windshield
of figure 10.1, this projection surface completely surrounds the moving
observer, The situation shown is complex: We must understand exactly
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Figure 11.1 )

The top panel shows one mapping of the vector paths of objects and textures in the
environment as an individual, in this case a bird, undergoes linear movement. This figure
is from Gibson (1966, 1979), © Houghton Mifflin Company, reprinted by permission
of Houghton Mifflin. The bottom panel shows how all surface information is projected
onto an imaginary sphere in order to show the relative velocities of textures, then re-
projected onio the picture plane.
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what is depicted and why it is depicted that way to understand optic
flow. The sphere (or hemisphere) around the bird is an imaginary
projection surface, as suggested by Leonardo da Vinci and discussed
in chapter 3, that allows the fewest distortions of natural perspective,

The arrows attempt to show unambiguous, instantaneous changes
in optic angles corresponding to displacements of objects in the world
as the bird flies. Textures on the planar terrain are mapped onto the
sphere and marked by arrows. These are then mapped a second time
onto the image plane, as shown in the bottom panel of figure 11.1.
Vector lengths differ dramatically with two variables. One is the distance
of objects from the projection sphere. Near objects move faster than
far, and far objects project higher on the sphere. The second is the
angle separating the line of sight to a particular texture from the path
of movement, Instantaneous displacements are greatest at 90° from
the path of movement and least at 0° and 180°, directly in front and
behind. The combination of these two variables yields the largest vector
traces directly beneath the bird.

The vector patterns are compelling; indeed, I have always found
them elegant and beautiful. When extended backward, opposite the
direction that they point, they denote the focus of expansion; and all
traces, when extended around the surface of the sphere, point to a
focus of contraction. There are, however, two problems with this figure,
one computational and the other based on underlying assumptions.
Consider the computational problem first. The length of the vectors
shown in the top panel of figure 11.1, especially those nearest the foci
of expansion and contraction, are too hopeful; they are exaggerated
beyond actual flow. Figure 11.2 shows the vectors redrawn using a
dynamic ray-tracing technique on a computer-driven plotter. Notice
that those nearest the two foci have much shorter lengths, suggesting
that a moving observer’s ability to locate the focus of expansion would
be diminished. The dynamic symmetry of this plot, however, is still
salient. But consider next the assumption underlying it being drawn
this way: This arrangement assumes a particular orientation of the
coordinate system of the projection sphere at the beginning and end
of the movement. In particular, it cannot rotate during the observer’s
locomotion. It is as if the moving observer must carry Leonardo’s
window—here perhaps best called Leonardo’s windshield—and ensure
that it maintains exact registration with the point toward which the
observer is moving. Such a scheme is shown in figure 11.3.

What happens if the projection sphere cannot be held in place? In
particular, suppose that the sphere rotates slightly during the forward
movement. Consider three possible rotations, one each around the x,
¥, and z axes with a magnitude of 2°. The x axis runs 90° to the direction
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Figure 11.2
A computer-generated plot of the projection shown in figure 11.1. Notice that the vectors
near the foci of expansion and contraction are smaller than in Gibson’s figure,

z axis

Figure 11.3

A representation of Leonarda’s window, in which the moving observer carries the pro-
jection surface through the environment. In accordance with the lower panel of figure
10.1, I call this Leonardo’s windshield. It is a section of the spherical projections shown
in figures 11.1, 11.2, 11.4, and 11.5. Three axes of potential rotation are noted: x (which
extends side to side across the observer), y (which runs vertically), and z (which extends
along the linear path of movement. These axes of rotation are used in figure 11.4.
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Figure 11.4

Algt:rnative mappings of flow during forward linear locomotion. (Top) The spherical
projection surface has been rotated around the x axis. Singularities are created where
the r axis meets the horizon and beneath the observer. (Middle) Rotation around the y
axis. Two new singularities are created to the left of the observer {one hidden at the
edge of the drawing). (Bottom) Rotation around the z axis. The displays are valid rep-
resentations of optic flow, as much so as those in figures 11.1 and 11.2.
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of movement through the eye and meets the horizon on both sides.
Such a rotation is seen in the top panel of figure 11.4 and might occur
if the projection surface were tumbling during the observer’s forward
movement. In this vector field there are four singularities, indicated by
dots, two at the horizon on either side of the observer and two beneath,
one fore and one aft. None are extended out from the path of movement,
and few vectors point in the direction of movement. Instead, the vector
field has substantial curl, or curvature, in its vectors. A second rotation
might occur around the y axis, or the vertical line running with gravity
through the eye. Such a rotation, seen in the middle panel of figure

11.4, might occur if the projection sphere spins sideways as the observer
moves forward. This mapping has two singularities and both happen

to be below and to the left of the observer. Again few vectors point
in the direction of movement, and the vector field is curled. The third
rotation is around the z axis, or the path of movement. Such a rotation
during the forward movement would yield an optic flow pattern like
that shown in the bottom panel of figure 11.4. Two singularities exist,
fore and aft, as before, but the horizon has shifted, as if the projection
surface were executing a barrel roll. And against Calvert’s and Gibson's
theories, these vectors generally do not point in the direction of the
singularities.

Itis important to note that all three panels in figure 11.4 are legitimate
representations of optic flow. These are not retinal projections; they
are alternative optic projections. They capture equally well the dis-
placement vectors of objects in the surround as an observer moves
through the environment. These facts mean that something is odd
about the flow in figures 11.1 and 11.2. Let us investigate this oddity
in a more rigorous manner.

Flow pattemns are mappings. To understand them, we must consider
the spherical projections around the station point at a2 minimum of two
times, {, and ¢,, during which the observer has moved a fixed distance.
And most important, we must consider the mapping between them.
Let h,(p) be the spherical coordinates of a particular texture at time t,,

and k,(p) its coordinates at time #,. Of most interest are textures for

which k,(p} = h,(p), the identity points. Figure 11.1 shows one possible

mapping. But these patterns occur only under the conditions of flying

over a flat terrain and, most important for this discussion, when the

point on the horizon toward which the observer is moving is used as

an identity point. The fundamental question, however, remains: How
is its location fixed? Calvert, Gibson, and many others assumed that
the location of the identity element should be directly along the line
of movement, but it is crucial to understand that any other point in the
spherical projection could be used.
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All diagrams shown in figures 11.1 to 11.3 are automorphic, a concept
from topology: Every point in the projection at ¢, is mapped into one
and only one point at #,.* It is a nagging but unavoidable problem that
there is nothing in the mathematics of automorphic mapping, a condition
requiring no occlusions, that dictates the location of the element sat-
isfying the condition h,(p) = h,(p). There is no point that is the center,
or fixed point, of the optic array at £, nor is there one at ¢,. Because
no central point exists at any instant in time, none exists across time
without additional assumptions. Thus the idea of a uniquely specified
pattern of optic flow is incorrect—a given pattern is contingent on the
choice of identity point. Make no mistake, there must always be at
least one such point, or singularity, from which mappings are made;
Brouwer’s theorem dictates this fact.> Moreover, the fixed point is a
topological invariant. But topology does not constrain locations such
that the fixed point’s place in the mapping can be determined. It seems
to me that this is the most serious logical argument against the efficacy
of the focus of expansion. Nevertheless, we should remain wary; it is
possible that there may be some other way, using some other as-
sumptions, for a moving observer to fix an identity point.

Five Problematic Assumptions Underlying a Fixed Identity Point

How might we choose an appropriate focus of expansion, registering
coordinates in the changing optic array? At least five different as-
sumptions can be made, any one of which if true would do the trick.
The first assumes that the viewer’s velocity through space does not
matter, the second fixes environmental information at the horizon, the
third fixes the orientation of the viewer’s ocular system (registering the
optic and retinal arrays), the fourth considers the decomposition of
retinal motions resulting from observer translation and eye rotation,
and the fifth considers the interaction of acuity functions for motion
detection. All are interesting; all have problems.

Velocity-Independent Utility of Flow

When the velocity of the observer is sufficiently great, the problem of
flow mapping disappears. The spherical coordinates of flow simply do
not have an opportunity to change when the interval between ¢, and
t, becomes vanishingly small. The result is blurred flow radiating from
a focus of expansion, as portrayed by near warp-speed flight in science
fiction films, perhaps even in landing aircraft. Gibson, in assuming that
the focus of expansion is always useful, generalized from an unnatural
situation (landing a plane) with high-velocity flow to the natural one
of walking and running. With lower-velocity flow, the problems of
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Table 11.1
Location in Optic Array of Objects at Various Angles from the Direction of
Motion before and after a Forward Linear Movement of 10 m

Location off the line of movement

Distance from

observer 0° 5° 10° 20°
25 m 0.0 (0.0 8.3 (3.3) 16.5 (6.5) 32.4(12.4)
50m 0.0 (0.0) 6.3 (1.3) 12.5 (2.5) 24.8 (4.8)
100 m 0.0 (0.0) 5.6 (0.6) 11.1 {1.1) 22.2(2.2)
200 m 0.0 (0.0} 5.3 (0.3) 10.5 (0.5) 21.0 (1.0}

a. Numbers in parentheses indicate the optical drift, or change in location,
as a result of observer movement. All measures are in degrees.

stabilizing the coordinate system of the optic array become significantly
greater because the interval between ¢, and ¢, is nontrivial.

Contrary to Gibson, Calvert (1954) and Hasbrook (1975) proposed
velocity-dependent utility for the focus of expansion. They suggested
that this dependence would be useful only when looking at near objects

at high speeds. Such situations are typical of those for a pilot landing . -

an airplane’ and perhaps even for professional race car drivers and
downhill skiers. Nevertheless, it is foreign to most everyday activity.

Fixed Horizon

A second assumption is that of a fixed horizon. Because all points on
the horizon are at great distance—about 4 km for a person of normal
height standing in Kansas in April—the optic flow of all points on the
horizon is essentially nil. Even as one drives a car at 100 km /hr, the
horizon is almost completely stable at all points, 360° around. Thus
both retinal and optic flow of the horizon are negligible, regardless of
where on the horizon one fixates—fore, aft, or to the side. This fact
would minimize the x and z rotations seen in the top and bottom panels
of figure 11.4 and ensure that fixation causes no ocular rotation. Thus
a stable horizon could be used to fix the coordinate system within
which to map flow.

This seems like an attractive solution. However, two problems arise.
First, in cities and in tree-filled nonurban, nonmountainous environ-
ments, we typically cannot see into the distance. In fact, it is quite
common for there to be no visible objects beyond a few hundred meters.
Optic flow for these farthest-visible objects is nonnegligible even at
pedestrian speeds. Unlike fixations on the horizon, those on near objects
force ocular movement. Should some object off the line of movement
be chosen as the identity point, serious misjudgments of movement
direction could take place. Some of these are indicated in table 11.1.

Multiple Representations of Optic Flow 177

Imagine a situation in which a runner is moving through a cluttered
environment at 5 m/sec, the speed of a good run. Suppose that the
runner is trying to take a linear path and looks out into the environment
for some reference that can be used as an identity point to determine
direction of movement and ensure a linear path. The best reference
would be the visible object farthest away. If this object is at a functionally
infinite distance, it can be used for direction finding quite well. But
stars and the sun are typically well above the horizon, and gaze is
usually just below it during locomotion. More convenient is some object
near the horizon line and in the general direction that the runner is
moving. If the horizon is assumed to be fixed, the object selected would
best represent zero optic flow. After the runner has moved forward,
say 10 m, how much have these objects moved in their angular pro-
jections with respect to the direction of movement? Values are given
in table 11.1 for objects 0, 5, 10, and 20° off the path of movement at
distances of 25, 50, 100, and 200 m. Notice that even relatively distant
objects at small angles to the path of movement change their location.
For an object 200 m in the distance at 5° from the path of movement,
that change is about 1° even when the runner has moved forward
only 10 m. Objects at all other distances and all other angular dis-
crepancies have larger changes in position. If any one of these is used
as an identity point to map optic flow, the runner would turn rather
than maintain linear trajectory. Given an unseen horizon, direction of

. movement might be more difficult to discern, We might then predict

that individuals would be considerably worse at guiding their move-
ments in relatively closed environments. Intuitively, such a finding
seems unlikely. I know of no data that suggest people are poorer in
knowing their heading in environments without horizons (say, inside
buildings) than with them. In fact, it seems downright implausible.

A second problem with the fixed horizon assumption is that, when
a viewer moves along a curved path, the horizon rotates with respect
to the viewer. Optically, a rotational vector of constant size is added
to' vectors of all projections of objects in the ambient array. This is a
considerable complication to the study of optic flow and forms the
basis of chapter 13.

Gyroscopes

A third manner in which the registration of coordinate systems could
be fixed is through a stabilizing system within the organism. We can
imagine an internal gyroscope that maintains constant ocular orientation
regardless of external affairs. That is, a person or any other creature
with mobile eyes could register change in direction of gaze through
registration of deflections in the gyroscope. This device would certainly
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facilitate choice of location of the identity point along the direction of
movement because the orientation of the system would be constant in
absolute coordinates. The individual need only locate any point that
remains in fixed position as the gyroscope maintains its fixed orientation.

One problem with this idea, at least with respect to providing an
optic solution to the problem of direction finding, is that the existence

of a gyroscope is independent of flow: The Byroscope itself must be

in the organism and cannot be in the optic array. A more pressing
problem, however, is that the relevant human gyroscope, the vestibulo-
ocular response system, is easily overridden by the field-holding reflex
of the accessory optic system, of which the optokinetic response is g
part (Simpson 1984). Because we look reflexively at things when we
move, we rotate our eyes and continue to look at a stationary object
while locomoting more often than we keep a steady gaze, letting objects
flow by. :

Decomposition of Motions :

Longuet-Higgins and Prazdny (1980} and Koenderink and van Doomn
(1981) claimed that instantaneous flow can always be parsed into two
independent sets of motions. According to Longuet-Higgins and
Prazdny, one set is extetrospecific and dependent on the trajectory of
the observer moving through the environment; the other set is pro-
priospecific and dependent on where the observer is looking.® Koen-
derink and van Doorn called the two sets of motions lamellar and
solenoidal flow. The propriospecific component is thought to be under

control in observer eye movements, the exterospecific in locomotion.

As suggested in chapter 10, we might call the exterospecific component
optic flow and the propriospecific component an addition of retinal
flow. Both occur for any translating observer fixating an object in the
environment off the path of movement, The claim is that, if the observer
could tease these two flow fields apart, direction of movement could
be discerned (Prazdny 1983a, 1983b),

Vector plots for composed and decomposed flows are shown in the
panels of figure 11.5. The top panel shows that the flows result from
forward movement and eye rotation to the right, as if the observer
were looking at an object off to the right. This pattern is roughly a
mirror image of the middle panel of figure 11.4, with a somewhat
reduced y axis rotation. The middle panel shows the components sten-
ing from Helmholtz's and Gibson’s analyses of forward movement and
the bottom from eye rotation in an otherwise still environment. The
idea is that an observer can either add the two bottom patterns to
achieve the top or subtract one of the bottom two from the top to
achieve the other as residual. Direction finding could be aided, or so
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Objective
flow

- "Exterospecific’
{lamellar}
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>y (solenoidal}
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Figure 11.5
Composition and decomposition of flow into two components, according to Longuet-

Higgins and Prazdny (1980). (Top) The flow for a situation in which the observer'moyes
linearly through the environment and rotates his or her eyes. (Middle) The optic flow
putatively resulting from forward motion. (Bottom) The retinal flow resulting from eye

rotation,
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the theory goes, if the observer could retain eye rotation information
and subtract out that vector to attain the flow pattern in the middle
panel.

Two aspects of this analysis are absolutely correct, but a third is in
error. It is unimpeachable that the addition of the vector fields in the
middle and bottom panels yields the top. Moreover, it is unarguable
that horizontal eye rotations yield vector displacements like those at
the bottom. But that is where the good news ends. Longuet-Higgins
and Prazdny claimed that the propriospecific component shown in the
bottom panel is typical of retinal flow. This is true but not exclusively

so. There is also a rotational component during curvilinear translation

that is exterospecific. Curved paths without eye rotation generate flow
like that in the top panel, a complication that I discuss in depth in
chapter 13. But provisionally, imagine driving a car through a curve
while looking at a fixed angle to the road surface, perhaps fixating on
the smear of lines dividing one traffic lane from another. In doing this,
the driver does not rotate his or her eyes, but the rotational component
of flow is still present because the driver’s head rotates in the envi-

ronment. Thus the division of retinal flow into two components—

which are mathematically and computationally sound-—does not
automatically separate flows of propriospecific from exterospecific per-
ception. Thus feedback from eye muscles cannot generally be used as
a basis for subtracting out the rotational vector field in the bottom
panel.

Asymmetries of Retinal Flow

A final possibility concerns retinal flow asymmetries. These occur
whenever the identity point is off the line of movement. As Richards
(1975, p. 355) noted:

If the observer is fixating off to one side away from his direction
of movement, the asymmetric flow patterns on the retina will
indicate that fixation is not in the primary direction . . , asymmetric
flow patterns will result whenever the fixation point does not cor-
respond to the vanishing point of flow set up by the body motion.:

It seems possible, following Richards, that whenever the eye is focused
on a point not along the direction of movement, asymmetries of flow
might be detectable and usable. Two analyses are pertinent to this
possibility, that of the sensitivity of the retina for detecting motion at
varying eccentricities and that of relative flow at those same eccentricities
from the direction of movement.

Figure 11.6 shows two functions. The first plots visual resolution
" against eccentricity, also known as the acuity gradient. Only one side
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Two functions of acuity. Static resolution is based on detection of sinusoidal gratings as
a proportion of performance at the fovea (about 45 sec of arc), adapted from Johnson
and Leibowitz (1979). Motion detection for the movement of small squares is also plotied
as a function of performance at the fovea (about 1.5 min of arc per sec), adapted from
Leibowitz et al. (1972). Both data sets are uncorrected for refractive error in the periphery
of the retina.

of the visual field is mapped, and the blind spot ignored (that region
between 12 and 17° on the temporal side of the visual field of each
eye, within which we have no sensitivity because of the disappearance
of the optic nerve through the scleral wall). Plotted is the threshold
for detection of high-contrast sinusoidal gratings.® The data are nor-
malized to performance at the fovea, where gratings of about 45 sec
of arc (0.0125°) are just detectable, Notice that acuity at 20° eccentricity
is about 15% as good as at the fovea.

The second function plotted in figure 11.6 is more important to the
analyses here. It maps detectability of a moving stimulus against retinal
eccentricity. Again the data are normalized to performance at the fovea,
where a small white square against a black background can be seen
to move when it oscillates through 1.5 min of arc (0.025°) per second.
Here, performance at 20° eccentricity is about 30% as good as that at
the fovea. Three facts should be noted: First, the fovea is the most
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along a curved path, the pattern of optic flow is seriously distorted.
These problems are considered in greater detail in later chapters.

Overview

first considered the possible velocity-independent utility of the focus
of expansion as Gibson construed it. Unfortunately, pedestrian speeds
are insufficient to guarantee the stability of the spherical coordinate
system of the optic array. The second was that the stability of the

array and that much of the accessory optic system is devoted to over-
riding gyroscopic maintenance of eye direction. The fourth proposal,
separating translational from rotational components of flow, is not sup-
ported by psychological evidence. Furthermore, it assumes that all ro-
tations are due to the eyes in their sockets and is thus confined to
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linear observer movement. And the fifth proposal concerned matching
flow and motion sensitivity functions. But this idea has difficulties with
cluttered environments and with curvilinear movement.

Thus there remains no clear way to fix the identity point along the
path of movement. Perhaps other assumptions can be made that I have
not been clever enough to discover, but the outlook seems bleak. I
suggest that an alternative method of wayfinding is needed. The next
chapter presents a prime candidate—~differential motion parallax.

12

Motion Parallax and Linear Movement

In chapter 10 I outlined the general failure of a series of information
sources to specify the direction of observer movement—the focus of
expansion, the point of maximum rate of magnification, and ocular
drift cancellation. In chapter 11 I began formal reinvestigation of optic
flow, with particular attention to multiple representation. In this chapter
[ present a different source of information for wayfinding that is gen-
erally available to the moving observer—motion parallax. Motion par-
allax, mentioned briefly in connection with experiments 7 and 8, is the
relative displacement of objects caused by change in observer position.
It was noted by Fuclid and Helmholtz and has been studied by many
others.! Graham et al. (1948), for example, showed that people can
detect changes as small as half a minute of arc per second in the
positions of two points. This is exquisite sensitivity.

Can this information be used for direction finding? In a commentary
on Helmholtz’s explanation of motion parallax, which I quoted in chap-
ter'11, von Kries (1910, pp. 371-372) captured the tools for providing
an affirmative answer:

Helmholtz has described certain changes in the configuration of
observed bodies due to motion on the part of the observer, and
discussed the effect they had on perception of distance. The changes
of which he speaks are such as the observer would notice if he
advanced forward without changing attitude of his head or his
eyes especially. In reality the phenomena are complicated by the
fact that, supposing our attention is attracted, not by objects moving
along with us, but by stationary external objects, we are invariably
of the habit of keeping the eyes fastened for a brief space on some
definite point, by turning them so as to counteract the effect of
forward motion of the body. . . . What happens in this case is that
for a brief space the image of the point of fixation for the time
being remains stationary at the place where it is on the retina,
while the images of objects that are nearer and farther than this
point glide over the retina in opposite directions. And so the point
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of fixation, being perceived as stationary, serves as a point of ref-
erence; and points which are farther away appear to be advancing
in the same direction as the observer, while points which are nearer
appear to be receding in the opposite direction.?

Here, von Kries laid much of the groundwork for what follows. Before
expanding on his analysis, however, let me review some of the benefits
of parallax descriptions of optic flow.

Benefits of Parallax

One of the good features of motion parallax is that large changes in
the optic array occur even when measured locally. Thus, to study the
efficacy of motion parallax, the researcher does not need large spherical
projection surfaces. So long as the projected environment is rich enough,
with numerous objects at different distances within a relatively small
solid visual angle, motion parallax can be displayed accurately on a
flat screen whose width and height are as small as a few degrees of
visual angle.

More important, however, is that in motion parallax, as opposed to
the descriptions of optic flow discussed in chapter 10, objects must be

at different depths in three-dimensional space. In contrast, the discus-

sions of the focus of expansion, asymmetries of flow, magnification
maxima, and ocular drift assumed environments generally compressed
along the z axis. In motion parallax, the objects interpose, passing
through what I call the plane of sight—an imaginary vertically oriented
plane intersecting both the eye and the object under scrutiny. When
an observer locomotes with fixed gaze, it is the relative velocity with
which objects pass through this plane that is of major interest, not
occlusions generated by interposition. Thus parallax is discussed as
instantaneous displacement differences, and no further mention is made
of accretions and deletions of texture.

The optics of motion parallax generated from linear movement can
be thought of in two ways: as translations in an affine approximation
or as rotations and translations in Euclidean space. The first is con-
ceptually easier and has been used for decades by psychologists and
cartoon animators. But its ease is more than countered by the fact that
it is geometrically incorrect. The second description is correct but con-
ceptually more complex.

Translations in an Affine Approximation to Parallax Flow
Motion parallax is often discussed using a diagram similar to that shown
in the top panel of figure 12.1. In such a situation, according to many
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The upper panel shows a common but incorrect representation of motion parallax. A
new concept, the plane of sight, is introduced for all those objects on a vertical plane
that passes through the eye and the fixation point. The lower panels show the affine
space of motion parallax often used in cartoon animation and implied in most perception
textbooks. Motion is represented by shearing different parallel depth plaries against one
another. This preserves collinearity of objects but not relative distances nor angles in
Euclidean space, ‘ :



188  Competing Invariants of Flow

researchers, a viewer stares at an object in the mid-distance, 90° to the
right of where the viewer is headed. Objects in front of fixation slide
to the right and those in back slide to the left. This is a reasonably
good approximation to optic flow, but it is true only for those motions
of objects exactly at right angles to the direction of movement.

As indicated in the lower panels of figure 12.1, we might imagine
objects laid out in depth as if they were on sliding vertical planes
parallel to the path of movement. That is, within a small viewing angle,
everything that is the same distance from the viewer is (roughly) on
the same plane, and objects at different distances are on different parallel
planes. Movement to the left is simulated by sliding these planes hori-
zontally to differing degrees. Planes nearer than the object under scrutiny
slide to the right, the plane of the fixated object remains stationary,
and far planes slide to the left. ‘

This conception is partly correct, but it is flawed because it does not
compensate for changing distances among the observer and alt objects
off the plane of sight. Regardless, the phenomenal effect of affine shear
is striking, and it demonstrates one of two major effects of motion

parallax~the change in position of projected elements in the optic

array against one another, shearing through the plane of sight.* Un-
fortunately, it dismisses the other important effect of parallax—rotation.
And it is doubly unfortunate because this affine representation is pre-

cisely the one that appears most often in the literature.? It leads to
mistaken ideas about the character of flow.

Rotations and Translations in Euclidean Parallax Flow
In the second, and geometrically correct, representation, the viewer
must imagine that the object under scrutiny becomes the hub of a
rotating and expanding (or contracting) array. Two manifolds of vectors
are overlaid, as suggested in chapter 11. One is a set of expansions
that accrue from moving closer to viewed objects (or contractions if
the viewer is moving away), the other a set of rotations. When the
viewer looks off to the right at some object, maintaining fixation on it
while moving forward, the changing optic array is the same as if the
ground and objects on it were rotating counterclockwise and expanding
around a vertical axis through the fixation point. Similarly, when the
viewer looks left, objects in the array rotate clockwise and expand
around the fixated object. Because the world is seen in polar projection,
these rotations generate important asymmetries of flow. Because this
conception is undoubtedly difficult to grasp initially, this systematicness
is the focus of the rest of the chapter,

As an introduction to the dynamic geometry of motion parallax,
consider the panels of figure 12.2, On the left-hand side is a rendering
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Representations of movement through space while observing a linear arrangement of
fenceposts off to the left. The left-hand panel shows these relations in environmental
coordinates with fencepost ¢ the object under scrutiny. The right-hand panel shows the
relations normalized to observer-object coordinates. Fenceposts 4 and e demonstrate the
differential motion parallax. Angle a, that between directions of movement and gaze, is
manipulated in three experiments in this and the next chapter. After Cutting (1983b).
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of an observer traveling obliquely past a line of fenceposts, labeled a
through e. Imagine that the observer continually fixates fencepost c.
The turning of the square along the path indicates either head turning,
ocular rotation, or their sum. This panel is drawn in environmental
coordinates with the observer moving through a stationary environment.
Such coordinates are object centered, following Marr (1982). The object
of interest is fencepost ¢, which serves as the stationary origin in this
coordinate system.”

The right-hand panel of figure 12.2 transforms the coordinate space
according to the following scheme: Here, the two sets of vectors—

rotations and expansions—are overlaid. If we measure the change in

fencepost positions, normalizing the distance between and the positions
of the observer and fencepost ¢, then the array of parallax motions (as
if seen from above) is portrayed. Going beyond Marr, these parallax
motions are in a hybrid of object- and viewer-centered coordinates.
Notice that, because the direction of gaze is fixed in this coordinate
system, the direction of movement must constantly change. Because
the observer continually fixates fencepost ¢, it becomes the center of
the flow pattern. Elsewhere, I have called this point a center of moment,®
and here it is a fixed point (or identity point) in the retinal array.

Of current interest, however, is the flow pattern around the fixed
point. Consider angle # as that between planes of sight to fenceposts

c and a, and v that between fenceposts c and e. While holding locations

of the observer and ¢ constant, the relative locations of 7 and ¢ (as well
as of b and d) must change. Thus 8 and v must also change. In the
right-hand panel of figure 12.2 is plotted the angular change from the
starting point shown in the left-hand panel (denoted by the dashed
line) to the last position {denoted by the dotted line). At the bottom
of the right-hand panel the changes in 8 and v are shown from the
position of alignment of the fenceposts with the observer to the final
position.

The crucial datum is that angle 8 grows faster than angle . Thus it
can be seen that objects nearer to the observer than fixation generally
shear faster than those farther away. Notice further that objects with
greater motion move optically in the direction opposite the direction of
movement. In other words, the faster-moving objects shear leftward
through the plane of sight, and the direction of movement with respect
to gaze is to the right.

A Note on Polar and Parallel Projection

The differential growths of 3 and v are the centerpiece of my analysis:
They are, quite simply, the reason we can determine direction of move-
ment. They create what I call differential motion parallax, an invariant
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Figure 12.3

A rotating circle seen in polar and parallel projection as viewed from above. In both
cases the angular rotation of the circles are equal to angle «. In parallel projection the
vectors of projected motion are the same (angles § and «) on the back and front of the
circle, whereas in polar projection they are different, with angle 8 larger than angle a.
This is differential motion parallax, and it occurs only with polar projection.

ordering, an inequality, in optic flow. Such parallax is contingent on
polar perspective. It is only under these conditions that things generally
closer move more rapidly than and in the opposite direction to things
farther away. Consider textures on the surface of a transparent sphere
or cylinder, shown in figure 12.3.7

The bottom panel shows the top view of a rotating polar-projected
cylinder. Note that the textures on the front and back surface move
an equal amount in absolute coordinates (and thus have equal-sized
absolute vectors) but that, when projected onto the screen, near textures
move more than far ones. In parallel projection this is not true, as
shown in the top panel. Because rays of projection are parallel, there
is no diminution of projected size with distance. Thus textures on the
back side move with the same velocities as those on the front. Parallel
projection of textured, transparent rotating spheres and cylinders always
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yields ambiguity. The optics are equally correct (ignoring occlusions)
for both clockwise and counterclockwise interpretations, and an observer
is likely to shift back and forth between them (Braunstein et al, 1982).
Ambiguity is due, in part, to lack of differential motion parallax in the
stimulus. But, with respect to flow, the major analytic question remains:
Under what conditions does differential motion parallax occur? More
concretely, under what conditions of object spacing is the growth of 8
greater than that of 4? '

Measuring Differential Motion Parallax

To measure motion with parallax, we need another digression into

calculus. Two types of derivatives can be used—those of time and those
of space. Again, 1 have chosen derivatives of space, incrementally small
changes in the observer position along the z axis, to represent flow so
that the patterns are not dependent on velocities, only on the extent
of movement. In this manner, the patterns are as true for a pedestrian
as they are for a pilot. To begin, it is easiest to consider functions

generated with an identity point extended from the direction of move-

ment, After that, I generalize flow patterns to cases in which a viewer
is looking at an object off to the side.

Looking Directly Ahead

Let x be the axis running laterally along the frontal plane, y that running
vertically along that plane, and z the dimension of depth along the
path of movement. Now consider the case for all points on a second
plane z units away from the observer and orthogonal to the line of
movement and gaze. Measured horizontally along the planar surface,
these points are x units from its origin, and measured vertically, they
are ¥ units from it. Converted to spherical coordinates, the angles are

6 = arctan(x/z), (12.1)
¢ = arctan[y/(x> + z2)'/7], (12.2)

where § is the horizontal angle (yaw) and ¢ is the vertical angle (pitch).
Because 1 am interested in flow, it is the instantaneous changes in these
angles that need to be considered as a function of the instantaneous
change in z, forward linear movement. After differentiation, these re-
lations are

d0/dz = —x/(x* + 27, (12.3)
dp/dz = —yz/[( + y* + 2 +29)77), (12.4)
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Equation (12.4) looks particularly formidable, but notice that, when

“x = (, it reduces to

do/dz = —y/(y* + ). (12.5)

The benefits of this reduction are that Eq. (12.5) has the same form as
Eq. (12.3), and it is identical with Eq. (9.2). Analytically, the denomi-
nators of Egs. (12.3) and (12.5) are formulas for circles, and in connection
with their numerators these are displaced to each side by distances
equal to their radii. Any point on these circles has an equal projected
displacement vector away from the observer’s heading. Those on circles
to the right project with rightward motion, and those on the left move
leftward. These are isoangular displacement contours, and they are
shown in figure 12.4.

In absolute terms (ignoring direction of flow) all points on the figure
eights in figure 12.4 project with equal instantaneous displacement.
Moreover, because Egs. (12.3) and (12.4) are for spherical coordinates,
a figure eight can be rotated around the axis of movement in three
dimensions, obtaining a toroid, or toruslike shape, as indicated in figure
12.5a.® Because these contours are associated with objects at different
x and z coordinates, figure eights in two dimensions (and toroidal sur-
faces in three) are nested within one another, as shown in figure 12.4.
They all share inner tangents at the location of the observer along the
path of movement.

Looking Off to the Side

What has been presented thus far are the vector fields for when a
viewer is already looking exactly in the direction of movement. The
arguments presented previously suggest that this is the end result of
direction finding, not the means by which it is accomplished. Thus we
must complicate the vector fields by considering the more general case
of looking off to the side. In such cases a viewer subtracts the particular
vector for the fixated object from the fields in figure 12.4. Displacement
contours remain circular, but matched pairs across the line of movement
in the horizontal plane are of different sizes. In three dimensions the
toroidal surface becomes asymmetric, resembling a lopsided bagel, as
shown in figure 12.5b.

Consider again the two-step process needed to attain these shapes.
First, the displacement field is generated as if the viewer is looking in
the direction of movement. Next, the instantaneous displacement vector
for the object actually at the fixation point is subtracted from the field.
Its vector depends on its distance from the observer and on its angular
departure from the line of movement. Thus there is a different set of
nested toroids for every fixated object at every instant around the line of
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Isoan'g-ular displacement contours in the horizontal plane for linear movement under the
condition of looking exactly in the direction of movement, Null velocity points are alony

the path of movement and gaze. All objects in the environment located on a iveE
contour flow laterally with the same instantaneous displacement. Equation (12.3)s egcifies
this flow, All contours are tangent to the line of movement at the location of th.e ob]:;erv ;
the values of all contours at this point, however, are undefined (0/0). *
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A three-dimensional instantaneous isoangular displacement contour for linear movement
with gaze fixed along the movement path. This shape is a toroid, or figure eight rotated
in the third dimension along the path of movement and gaze. Equations (12.3} and (12.4)
specify this flow. (b) The same contours for an observer looking somewhat off to the
side. The toroid has deformed into a shape more like a lopsided bagel.

sight, when the viewer is not looking in the direction of movement, This
is simply another way of stating that there is a different set of parallaxes
associated with every object that the viewer may choose to look at as
he or she moves. In figure 12.6 are shown different cases in which a
viewer is looking at objects at different locales and the resulting two-
dimensional displacement fields. Of particular interest are the displace-
ment contours across the line of sight. ‘

Necessary Conditions for Differentinl Motion Parallax

One way to determine the limits of differential motion parallax is to
explore the following situations: (1) Choose an object (object 1) at a
given' distance and angle and fixate it; (2) choose another (object 2)
nearer than the fixated object; and (3) determine the locations of the
class of entities {objects 3) farther away that moves with an instantaneous
displacement greafer than and in the direction opposite object 2. Re-
ciprocally, if object 2 were farther away than object 1, we could de-
termine the locations of a near class that moves less than and in the
direction opposite object 2. Such demonstrations delimit regions in
which differential motion parallax fails. Because of the general com-
plexity of this formulation, it is prudent to consider objects only in the
horizontal plane.
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Iscangular displacement contours in the horizontal plane when an object off the line of
sight is fixated. The velocity of the object under scrutiny has been subtracted from the
motion of all other points. (a) The instantaneous contours when looking at an object at
a fixed distance and 10° off to the right. (b} The same but at 45° off to the right. (c) The
same but at 90°.
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Figure 12.7

The conditions of differential motion parallax, considered only in the horizontal plane.
Object 1 is fixated in all panels, object 2 is the reference object, and the shaded areas
indicate possible locations of all objects 3 that fail to meet the conditions of differential
motion parallax. (a, b) Cases in which nearer objects violate this parallax rule and all
objects 3 shear leftward and more slowly than object 2 shears rightward. {c, d) Cases in
which farther objects violate the parallax rule, shearing rightward faster than object 2
shears leftward. Most important is part (d): When cobject 2 is half the distance to object 1,
no object out to infinity along or near the plane of sight moves with equal but opposite
velocity.
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Selected examples of this scheme are shown in figure 12.7.
Object 1 is always the fixated object, bathing the fovea, Object 2 in
figures 12.7a and 12.7b is nearer to the observer and in figures 12.7c
and 12.7d it is farther away. All objects 3 that fall within the stippled
areas fail as examples of differential motion parallax; nearer objects
shear less rapidly than farther objects. Most important is figure 12.7d.
When object 2 is only half the distance of object 1, all farther objects
near the plane of sight, no matter how distant, demonstrate differential
motion parallax. That is, no object, not even a star, would shear in the
d1.rection of movement as fast as object 2 shears the other way. Thus
minimal and universal conditions for differential motion parallax have
a reference object haif the distance away from the fixated object, Having
outlined the necessary conditions for differential motion parallax, in

of movement. Close work is stationary work, We do not want any
~movement when looking closely, say, at a newspaper, unless someone
else, say, a bus driver, is responsible for locomotion. Looking at the
opposite extreme, at the horizon, poses no problem because all moving
objects, not simply the most rapid, shear through the plane of sight
and in the direction opposite that of movement.

Experiment 9: Differential Motion Parallax and Linear Movement

Having formulated these rules, we need to see if they are used.” The
basic technique is one from psychophysics and is like that used in
experiments 1 through 8. In this experiment four observers participated
individually: two graduate students, one undergraduate, and me, Par-
ticipation entailed viewing dynamic computer-generated dispiays over
the course of two 45-min experimental sessions. Stimuli were generated
on the same apparatus as before and simulated linear movement through
an environment. The environment itself was sparse, consisting of twelve
vertical lines, four randomly placed on each of three parallel planes
orthogonal to the line of movement. All lines extended the full vertical
height of the scope face (about 8° of visual angle) so that no relative
size information would be available to determine the distance to each
plane.' The experimental situation is shown in figure 12.8.

Dynamic sequences were computed uniquely for each subject for
each trial."' Simulated movement toward the planes was scaled to be
about the same as that in Regan and Beverley’s (1982) experiment,
58 km/hr. Movement began when the observer was, on this scale,
76 m distant from the middle plane and continued at constant velocity
until he or she was 38 m distant. Each sequence of forward movement
was repeated three times within a trial, with a 0.5-sec pause between
presentations, yielding a trial duration of about 8 sec. Four viewing
conditions were employed, each distinguished by the relative distances
among the three planes. Each of these is indicated in figure 12.8, and
four frames each of three trials under condition 1 are shown in figure
12.9.

Viewers were told to consider the dynamic displays as representing
the movement through an environment with twelve vertical wires and
that some trials simulated looking ahead, some looking left, some right,
The task was to determine which of the three possibilities was shown
on a given trial. Under each condition a viewer was presented with a
random sequence of 15 trials per block—five for each direction of gaze.
Viewers were given feedback after each trial. Within a block of trials
the angle between the directions of gaze and movement (for left-looking

Recursive Rules for Determining Direction of Movement

1. Determining the Direction of Gaze with Respect to Movement, 1f, when
looking at an object in the middle distance, a viewer sees that the clags’
of objects shearing rightward through the plane of sight generally moves
faster than that shearing left, then the viewer is looking to the right
of the direction of movement. Contrariwise, if objects shear leftward
generally faster, then the viewer is looking left,

2. Determining the Direction of Movement. In order for a viewer to
determine the direction of movement, he or she must shift gaze to a
new object in the direction opposite the fastest motion in the retinal

a}-rﬁy. Rules 1 and 2 are repeated until no objects cross the plane of
sight.

Constraints. First, the local environment must be cluttered enbugh'
50 tha_t it contains a sufficient number of objects at various distances
and directions. At a minimum there should be objects along or near

the lowe.r part of the plane, and objects farther away through the higher
part. This second constraint seems unproblematic because the viewer
would not generally look nearby when wanting to know the direction
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Figure 12.8

Stimulus conditions of experiment 9 in three different gaze-movement trials as might-
be viewed from the top. The conditions are distinguished by the distances among the
planes, and the gaze-movement trials are distinguished by whether the simulations have
the observer looking to the left, looking ahead, or looking to the right. As shown in'the
key, the trials in (A} correspend to condition 1, in (B) to condition 2, and in {C) to
condition 3. A fourth condition (not shown) collapses all three planes together.

Figure 12.9

" Four images taken out of each of three motion sequences used in experiment 9, corre-

sponding to the 1st, 19th, 27th, and 55th (last) frames. Panels on the left-hand side are
those for a trial that starts out looking 20° to the left, those in the middle for a trial
looking directly ahead, and those on the right-hand side for a trial starting with a gaze-
movement angle of 20° to the right, Above each panel are dots indicating to which plane
each line belongs. Large dots at the bottom are those for plane A (the closest to the
observer), small dots are for plane C, and medium dots are for plane B.

and right-looking trials) was fixed. I call this the gaze-movement angle.
All viewers began their first block of trials under each condition with
initial gaze-movement angles of 20°. That value was halved for each
successive block until performance fell to chance. Figure 12.8 shows
schematic renderings of the geometry of a left-looking trial under con-
dition 1, an ahead-looking trial under condition 2, and a right-looking
trial under condition 3. Before beginning, each viewer was given five
practice trials from the first block under condition 1.

All planes were perpendicular to the direction of movement, and
their centers were aligned with the line of sight when the trial began,
as shown in figure 12.8. The locations of front and back planes (4 and
C, respectively) were chosen so that the absolute distance from A to B
was less than that from B to C, providing a stronger test for differential
motion parallax than shown in figure 12.2.'* Because two-thirds of the
trials began with an initial gaze-movement angle greater than zero and
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Figure 12.10

Results for all four conditions of experiment 9 (linear movement). Vertical bars indicate
plus and minus one standard error of the mean.

because simulation mimicked continued fixation of a point in space’

(the center of plane B) as the viewer moved, subsequent gaze-movement
angles systematically increased. Trials that began with angles of 20,
10, 5, 2.5, 1.25, and 0.625°, ended with ones of 36.05, 19.43, 9.93,
4.99, 2.50, and 1.25°, respectively. This latter set of values form the
independent measures of the experiment. That is, if the observers started
out on a trial looking 2.5° to the left, wound up looking 4.99° to the
left, said that they were looking left on that trial, and were reliably
correct for right-looking and ahead-looking trials within that block as
well, then we can say that they were able to determine their heading
within 5° of visual angle.

Results ,

Data for the four conditions are shown in figure 12.10. On the ordinate
of each plot is the mean percentage correct. Chance performance is
1 trial correct out of 3, or 33%. On the abscissa is the final gaze-
movement angle simulated by the left- and right-looking trials of each
block. Under condition 1, where the planes were farthest aparf, per-
formance remained high (above 80%) for trials with final gaze-
movement angles as small as 5°. More important, observer performance
remained above chance for final gaze-movement angles as small as
37 min of arc. Under condition 2, with planes closer together, the same
general pattern recurred but was attenuated somewhat. Performance
remained high through trials, simulating final angles of 10°, and re-
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mained above chance through 1.25 deg of arc. Under condition 3, with
planes closer still, performance was decreased still further. It was never
as high as under the other two conditions and was reliably above
chance only through final angles of 5°, Finally, under condition 4, with
all planes superimposed, performance was near chance, even at 36°.
No further blocks were run because performance was so poor.

The results under condition 4 are a replication of Regan and Beverley’s
(1982): Observers really cannot discern their direction of movement
for orthogonal approach to a single plane. The results under condition 1,
on the other hand, exhibit exquisite observer sensitivity to differential
motion parallax. Considering only the performance on the first five
blocks under the first three conditions, the effect of changing the relative
distances among planes was statistically reliable, as was the effect of
reducing the final gaze-movement angles from 36° to 2.5°."* Phenom-
enal impressions of depth in general matched these results. Impression
was strongest under the conditions with the largest gaze-movement
angles and with the planes farthest apart. Condition 4 gave no impres-
sion of depth at all. Given the accuracy for judging gaze direction under
condition 1—where left-, ahead-, and right-looking judgments could
be made reliably for gaze-movement angles of less than 1° left, 0°
ahead, and less than 1° right—we might conclude that viewers can
accurately judge their direction of movement from the minimal displays
used here.'* Before drawing such a conclusion, however, reconsider
what may seem to be a curious aspect of the stimuli.

On Simulated Fixation

Many readers may find odd the use here and by Regan and Beverley
of a simulated fixation technique. The observer sees on the screen a
stationary object that would be moving relative to him or her in the
real world. Moreover, no matter how the observer’s eyes move across
the screen, that projection is unchanging—a situation completely unlike
that of a real environment. How can such a situation be representative
of the changing optic array?

The answer is twofold. First, when watching a film or television, the
observer is often engaged in simulated fixation. The camera may pan
around to follow something that is moving or the cameta may be
moving and focus on something that is not or both camera and object
can be moving with focus on the object (see Gibson 1979, Hochberg
1978a). What is presented to the viewer on the stationary screen or
monitor is a moving or changing world. The viewer may scan the film
or television image, but he or she will not, even if a young child, find
this situation difficult to apprehend.” It is a nontrivial question as to
why it is not disruptive, but everyday experience says it is not. Part
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of the explanation must be that eye position and efferent commands
are not potent sources of information when compared with motion in
the optic array (Turvey 1977). Although this viewing situation is not
ecologically valid in a biological sense, following Gibson (1966, 1979),
it is very much so in a social sense, following Brunswik (1956) and
Barker (1968): Television and film are deeply embedded in our culture,

The second part of the answer, and the part that provides theoretical
justification, concerns the optics of polar projection. So long as the
viewer’s eyes are near the point of projection, the geometry will be
correct regardless of where the viewer looks. If the simulated fixation
point is at the center of the screen, the experimenter should probably

assume that the statistical center of all fixations is there as well. The

experimenter should also assurne, however, that unless eye movements
are monitored and provide evidence to the contrary, viewers will move
their eyes about the screen as they would in any other everyday activity.
What changes with these eye movements is the acuity gradient for the
information seen, but the information itself is consistent and correct
for the station point. The fact that the observer scans the scope face
during the trial suggests a constraint on interpreting the data: Observers

can make judgments about their direction of movernent within 1° of

visual angle, given a stimulus array size of about 4° radius, This is still
a remarkable feat, especially given the minimality of these displays.

On Chance and Better Performance

One might, and indeed should, argue that the slightly-above-chance
performance at a final gaze-movement angle of about 1° is not adequate.
In chapter 10 I stated that runners, drivers, pilots, and skiers need to
judge direction accurately at 1°; and surely we would not entrust our
lives to a pilot or driver whose performance at avoiding obstacles was
only slightly better than chance. One way to rectify these results with
those demands is to consider an experiment that performed that used
regularly placed, rather than randomly placed, verfical lines on three
planes. These stimuli looked like a march through a colonnade, and
there I was able to judge direction within 6’ of visual angle, almost an
order of magnitude better. Another mechanism for improved perfor-
mance would be to spread out the planes in depth to an even greater
degree than under condition 1.

QOverview

Differential motion parallax provides a plausible means for determining
one’s direction of movement. One need only pick out an object in the
mid-distance of a cluttered environment and observe relative motions
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of other objects near it along the plane of sight. If the most rapidly
moving objects shear to the right, one is almost surely 109kmg to fche
right of one’s direction of movement; and if the most rapidly moving
objects shear left, one is almost surely looking left. T.he resullts of
experiment 9 suggest that observers can use this information tf) discern
their direction. Provided that objects are sufficiently far apart in depth,
the observers were able to discern direction within a fraction of a degree
of visual angle. Given that pilots appear to use vertical displace'ments
of parallax information in visual landings of aircraf.t (Lar)gewmsche
1944, Hasbrook 1975) to determine if they are too low in their approa-.ch
and given that horizontal parallax displacements surrognd the. terrest‘nal
observer during all movements, it seems likely that dlffe.renhal motion
parallax is used in everyday locomotion, Before concluding that, hc!w-
ever, we need to consider the more general case—curvilinear translation

through an environment.
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Motion Parallax and Curvilinear Movement

In chapter 12 I presented the theory, mathematical formalisms, and
data to support a method for determining heading during linear move-
ment. It should be clear, however, that this is not the general case.
More often, we move along a path that is at least slightly curved; we
bob and weave when we walk or run, angling around corners, obstacles,
and puddles. It would be much more convincing if differential motion
parallax were useful for wayfinding along such paths. Thus in this
chapter I extend the analysis to the curvilinear case.

There is an indefinite number of ways in which a path can be curved,
but this should not detain us. For simplicity’s sake it is easiest to start
with paths that are an arc of a circle. The rationale was captured by
Russell (1897, p. 17):

Just as the notion of length was originally derived from the straight
line, and extended to other curves by dividing them into infini-
tesimal straight lines, so the notion of curvature was derived from
the circle, and extended to other curves by dividing them into
infinitesimal circular arcs.

Again, it is easiest to consider flow in the horizontal plane. Thus the
path of the observer is always along the perimeter of a circle, much
as if the observer were on a merry-go-round, and the information
considered is that at eye level. The generality of this analysis to other
curved paths and to three dimensions is briefly considefed later in this
section.

For now, however, consider the situations shown in the upper panels
of figure 13.1. Let r be the radius of the circle around which the observer
moves, L the distance between the center of that circle and the object
under scrutiny, and g8 the angle between lines from the circle’s center
to the observer and to the fixated object, The ultimate angle of interest,
w, is that between the tangent to the circle and the line to the object
at the point of the observer. Interest in « stems from the parallel that
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The geometry of curvilinear movement. O is the location of the observer, p is the perimeter
of the circular path of movement, r is the radius of the circle, L is the distance {length)
from the center of the circle to any particular object in the field of view, and « and 8
are two important angles for consideration. The left-hand panels show the situation of
looking outward from the path of movement, and the right-hand panels for looking
inward and across the path of movement. Angle a is the final gaze-movement angle
during the simulated forward movement of an observer in experiment 10 and the initial
angle in experiment 11, It is determined by the tangent to the movement path and the
line of sight to the middle of the central plane.

a

finish
Figure 13.2 :
Iscangular displacement contours for curvilinear movement. Compare these to the contours
in figure 12.4, noting not only the shapes but also the values of contours themselves.
start

The circular path in (b) has a radius one-fourth that in {(a). With tighter circles the
differences in the vector fields get flatter and asympotically approach unijform flow when
the abserver simply twirls in place.

it sets up with the linear movement case (although spherical coordinates
# and ¢ are not used). For circular movement, « is determined by

a = 90° — arctan[L sin §/(r — L cos ). - {(13.1)

If the observer moves around the circumference of the circle, then o
changes as a function of 3:

de/df = L(r cos 8 — L)/(r* — 2Lr cos § + L?). (13.2)

The isoangular displacement contours, analogous to those in figure
12.4, are shown in figure 13.2a for the situation in which the radius
is relatively large and in figure 13.2b, in which it is one-fourth the size.
Notice that the two patterns differ only by a scale factor and that they
are the same overall shape as those for linear movement. Notice further
that the contour values are flatter for the tighter circle than for the
larger. In-the degenerate case, where r = (J, the entire optic field attains
2 uniform velocity of —1.00, signifying unit rotation.

Intuitively, the similarity of flow patterns for linear and curvilinear
movement makes sense. After all, the special character of circular
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movement is in the derivatives of the displacements, which for con-
venience I simply call angular accelerations; instantaneous displace-
ments (velocities) should not be affected.' The similarity also holds for
generalization to other curved paths. That is, following Russell, we can
always consider the movement along some suitably small section of a
curved path as that along the arc of a circle. Regardless of how small
this arc may be (unless curvilinear locomotion degenerates into pivoting
in place), the contours are like those shown in figure 13.2. Only relative

steepness is affected, and this is caused by the relative sharpness of

the curve taken.

Differential motion parallax can be used in curvilinear movement as

it is in linear movement. The contours in figure 13.2 are for reference,
drawn by choosing the point projected outward from the instantaneous
tangent to the circular path. If the observer happens not to be looking
directly at that spot—a likely possibility—he or she will be looking at
some object that has associated with it a particular instantaneous dis-
placement with respect to this reference. That displacement can be
nulled through vector subtraction. In other words, the same procedure
as that in chapter 12 can be used. Of course, direction of movement
is constantly changing, but changing (at least in this case) in the same
manner at all instants. Differential motion parallax operates here because
the pattern of motions along any line of sight is the same regardless
of the shape of the curved path.

In three dimensions the isoangular displacements of figure 13.2 wrap
around in the manner shown by comparing figures 12.5 and 12.6. That
is, when a viewer is looking at some point along the contour with a
value of 0.0, all those objects in the xz plane with a positive value of,
say, 2.0 wrap around and meet those with values of —2.0. If, on the
other hand, the viewer is looking at an object along the 1.0 contour,
then those at 2.0 wrap around along three-dimensional figure eights
and meet those on the 0.0 contour,

As would be expected, linear and circular movements differ in
instantaneous acceleration contours. Figure 13.3a shows those move-
ments for gaze directly along the path of linear movement, and figure
13.3b shows them for the tangent to a circular path.? Contours of other
curved paths are variations on this theme. However, when the observer
is not looking directly ahead along a straight path or along the tangent
to a curved one, the situations are much more complicated for both
linear and curvilinear movement. Luckily, because differential parallax
concerns only relative displacements, not relative accelerations, no fur-
ther use is made of acceleration analyses.?

If wayfinding is determined on the basis of instantaneous displace-
ments, then we would expect the same pattern of results for curved
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movement

a

Figure 13.3
Isoangular acceleration coritours for {a) linear and (b) curvilinear movement.

as for linear movement. Two situations are considered: moving along
the path looking outward from the circle and looking inward and across
it. The radius of the circle dictates relative sharpness of curvature and
hence serves as an dependent measure. Ultimately, moving in circles
with large radii approaches linear movement.

Experiment 10: Differential Motion Parallax and Looking out from a
Curved Path

Four observers participated in this three-condition experiment: Three
of us from experiment 9 and one naive observer.* In all respects but
two, the procedures and stimuli were identical with those of the previous
study: There was no condition 4 (under which three planes collapsed
together), and the simulated path of movement, rather than being linear,
followed the arc of a circle for those trials in which stimuli simulated
looking off to the side. In one-third of the trials the path curved to the
left, in one-third it was straight ahead, and in one-third it curved to
the right.

Trials curving left and right began with paths orthogonal to the
planes. As in experiment 9, the simulated fixation at the center of the
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Results of the three conditions of experiment 10 according to final gaze-movement angles,
Allinitial gaze-movement angles were 0°. The movement was curvilinear, and the direction
of gaze was outward.

screen corresponded to the center of plane B. As before, the orthogonal

distance traveled toward plane B was half the starting distance to it.
Lateral distances varied according to curvature. Conditions began with
blocks of trials whose path followed 0.50 rad of a circle (29° around
the circumference). As before, successive blocks were increasingly dif-
ficult: 0.23 rad (13° of arc), 0.11 rad (6.4°), 0.06 rad (3.2°), 0.03 rad
(1.6°), 0.014 rad (0.08°), and under condition 1, 0.007 rad (0.40°). Final
gaze-movement angles were 42, 19.4, 9.6, 4.8, 2.4, 1.2, and 0.,6°, re-
spectively, and they serve as the independent measures. An overhead
view of the geometry of a sample trial from block 1 of condition 1 is
shown in the bottom left-hand panel of figure 13.1.

Results

The results are comparable with those of experiment 9, as shown in
figure 13.4. Under conditions 1 and 2 performance remained high for
trials simulating final gaze-movement angles as small as 5° and under
condition 3 as small as 10°, Performance remained reliably above chance
for angles as small as 0.6° under condition 1 and 2.4° under conditions
2 and 3. Significant differences were found across conditions and radii.’
The comparability of results in experiments 9 and 10 corroborate the
idea that the same information is available and used during linear and
curvilinear movement. Before discussing this further, however, consider
the remaining case. '
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Figure 13.5

Results of the three conditions of experiment 11 according to initial gaze-movement
angles. All final gaze-movement angles were 0°. The movement was curvilinear, and
the direction of gaze was in and across.

Experiment 11: Differential Motion Parallax and Looking in and across a
Curved Path

The four observers in experiment 10 participated here. The procedures
were identical, and in all respects but one, the stimuli were identical
as well. As shown in the bottom right-hand panel of figure 13.1, trials
that did not simulate moving and looking straight ahead began along
a curve and proceeded until the tangent to the path of movement was
directly facing the center of all planes. Thus all curved trials began
with the observer looking into the circle across the curved path of
movement and cutting a chord across and beyond it. Because final
gaze-movement angles were always zero, initial gaze-movement angles
served as the independent measures. Successive blocks simulated the
following paths around the circle: 0.88 rad (61° of arc), 0.38 rad (26°),
0.19 rad (12.7°), 0.90 rad (6.3°), 0.046 rad (3.2°), 0.023 rad (1.6°), and
for condition 1 a final block of 0.010 rad (0.7°). Initial gaze-movement
angles were 44, 19, 95, 4.7, 2.4, 1.2, and 0.6°, respectively, across
blocks. Because all trials ended with a gaze-movement angle of 0°,
viewers were asked to indicate which direction—left, ahead, or right—
they had been looking during the course of the trial.

Results and Discussion
The results were comparable with those before, as shown in figure
13.5. Under condition 1 performance remained high for initial gaze-
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movement angles as small as 4.7°, and under the other two conditions
it was only slightly worse. Under conditions 1 and 2 performarnce
remained above chance for initial angles as small as 1.2° and under
condition 3 as small as 2.4°.5

Differential motion parallax, then, appears suited to direction finding
along both straight and curved movement paths. In fact, an oscillating
path of gait—a slight waddling from side to side—may be beneficial,

When a viewer is looking at an object generally in the direction of -

locomotion, other objects near and far oscillate back and forth through
the plane of sight at rates dictated by differential motion parallax.

Farther off the line of movement this oscillation ceases to be noticeable, -

Thus a crude measure of whether or not a viewer is looking in the
direction of movement is to notice whether or not oscillatory motions
occur. Finally, to round out the discussion, consider what other sources
of information might do for curvilinear movement.

Curved Paths and Other Sources of Information

In chapter 10 1 reviewed several schemes for direction finding other
than differential motion parallax. Among them were the focus of ex-
pansion, which has the problem of specitying in a logically noncircular
way an origin for a spherical coordinate system; asymmetries of retinal
flow, which have the problem of assuming movement through a com-
pletely homogeneous environment; the point of maximum rate of mag-
nification, which has the problem of disappearing when the observer
moves parallel to a plane; and ocular-drift cancellation, This is the
place to give them another airing.

Let me start with the focus of expansion, or center of outflow., During
forward movement, Gibson (1979, p. 229) suggested:

A shift of the center of outflow from one visual solid angle to another
specifies a change in the direction of locomotion, a turn, and a remaining
of the center within the same solid angle specifies no change in direction.
The ambient optic array is here supposed to consist of nested solid
angles, not of a bundle of lines. The direction of locomotion is
thus anchored to the layout, not to a coordinate system. The flow
of the ambient array can be tFransposed over the invariant structure
of the array, so that where one is going is seen relative to the
surrounding layout.

Gibson's concern with solid angles rather than with rays of lines
stems from the necessity of representing continuous surfaces and oc-
clusions in the optic array. The diagrams presented throughout chapters
10 through 13 show only edge information, but with some interpretive
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care the edges can be extended to represent the surface between them.

-Gibson’s concern (see also Sedgwick 1983) with coordinate systems
can be restated in the terms of figure 12.2, in which the coordinates
important to him are those of the environment, not the retinal array
(and observer). I have no qualms with preferring one over another,
because I approach this analysis with the idea that coordinate systems
are interconvertible. As stated in chapter 11, however, it is simply that
the choice of an origin of the system at any point in time is always
arbitrary and that there is a multitude of different possible mappings
of optic flow.

But consider why Gibson’s analysis is doubly flawed for curvilinear
movement. A focus of expansion is thought to be a stable point. For
linear movement figure 12.4 shows the focus of expansion as the point
along the line of movement, which has null displacement. In figure
13.2, however, this point (and line) has unit negative displacement.
Null instantaneous displacement occurs only for a circle that goes
through the location of the observer, the center of the circle generating
the circular path of movement, and two points half the radius to the
right (for a rightward-going curve) along the x axis, with one forward
along the z axis and the other back along it. When the path of movement
curves to the left, the circle of null displacements would be in the
mirror-image location. Properly, then, the points along this curve ar.e
the only ones that could serve as the focus of expansion for the optic
array. Yet none has a location along the path of movement (except at
the tangent to the circle at the location of the observer), nor does any
indicate where the observer will soon be along the curved path, This
curve simply floats off to the side.

Thus the focus of expansion during curved movement has two prob-
lems. The first, shared with the linear case, is that there is no apparent
way to anchor the origin of the optic array’s spherical coordinate system,
and the second is that the focus of expansion is not a point along a
curved trajectory but a line of no particular inherent importance except
that it points in the direction of curvature. This latter fact is important
to me because most rapid flow occurs in the direction opposite the
turn,

The other three potential sources of information can be dealt with
more succinctly. Going somewhat beyond the analysis of Richards
(1975), when successive samples of the optic array are taken on a
curved path, the vector paths of objects curve, like those shown in the
top panel of figure 11.5. The asymmetry of these curved vectors indicates
the direction the observer is turning, and its extent indicates the steep-
ness of the curve. This analysis is fine as far as it goes, but it assumes
that the eye maintains no fixation during the curved path. Instead, the
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observer stares blankly into space at a fixed angle from the curve’s
tangent. When the observer looks at any object during locomotion, the
optics become much more complicated, and differential motion parallax
is needed.

Setting aside terminological problems, consider next magnification,
as proposed by Regan and Beverley (1982). Because the location of this
point was worked out for only a single plane at a time, imagine a
situation in which the observer takes a curved path toward that plane.
If the observer is curving away from the plane, the point of maximum
magnification becomes increasingly farther away from the point of
impact, rendering it not very useful. 1f, on the other hand, the observer
is curving into the plane, such a point might become useful, but the
problems mentioned earlier still remain. In particular, the magnification
function is not pronounced until quite close to impact. Thus it is not
clear that this point could be located until the utility of the question
about direction becomes moot,

Finally, Llewellyn’s (1971) theory of ocular drift has particular dif-
ficulty when applied to curvilinear translation. If an observer fixates
on an object, regardless of where it is in the optic array, the observer’s
eyes will rotate in their sockets. Thus drift occurs under all conditions,
not simply those when the observer is not looking along the path of
movement. Eye rotation cannot be particularly informative, except that
saccades are most often made in the direction opposite movement. But
there is a hint of truth here, and I return to it at the end of the chapter.

General Querview

The results of three experiments in the last two chapters and the analyses
presented in the two preceding them suggest that differential motion
parallax may be the only sufficient information for judging direction
of movement in everyday settings. It seems useful for locomotion along
straight and curved paths, and the accuracy with which direction can
be judged is roughly the same—about half a degree of visual angle,
given the range of spread between the near and far planes used in my
experiments.

Other sources of information that have been proposed for direction
finding have not generally produced results of such accuracy, or if they
have, they were based on stylized and unnatural flow, Regan and
Beverley (1982, 1983), for example, demonstrated that the point of
maximum rate of magnification could be judged within fractions of a
degree of visual angle, but their results are contingent on viewing the
flow of a nonrigid world. When their display presented a rigid plane,
the results suggested that their viewers were more than an order of
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magnitude worse. Llewellyn (1971) suggested that drift cancellation
procedures could determine direction of movement. When that can-
cellation yielded motion parallax information, his results were roughly
the same as reported here. When in his other experiments only ocular
drift remained, his viewers also performed an order of magnitude worse.

Gibson proposed that the focus of expanston was sufficient to judge
direction of movement under all conditions of forward velocity. Those
under which it is an effective source, however, appear to be limited to
those of high speed at low altitude—such as landing an airplane. Under
more cornmon conditions of movement, such as walking or running
across a field, the focus of expansion is less implicit than previously
suggested, But under precisely these conditions, motion parallax remains
arich source of information. The conditions simulated in my experiments
are meant to be comparable with those of Regan and Beverley (1982)—
with a forward speed of 58 km /hr moving toward a middle plane that
is 76 m distant. Because this can be reduced by a scale factor, it also
simulates movement at 5.8 km/hr (1.6 m/sec) toward objects that are
7.6 m distant, values like those for walking in cluttered environments.

On the Sufficiency but Nonnecessity of Motion Parallax

I'make no claim that differential motion parallax is necessary to direction
finding. Instead, 1 claim only that it is likely to be the best information
for the task at normal speeds. 1t is easily supplemented by other in-
formation. When looking out at an object on a flat field, an observer
not only has parallax but also information from relative size, height in
the projection plane, and occlusions. In addition, stereoscopic differences
in anearby, rapidly moving object can be used to discriminate differences
in direction of less than half a degree of visual angle (Regan and Beverley
1975). The first two factors, relative size and height in plane, may be
responsible for the increased performance accuracy of the viewers of
Kaufman, Warren, and Riemersma over those of Llewellyn, Johnston
etal., and Regan and Beverley. With the addition of other information,
it seems likely that accuracy of judging direction of movement in natural
situations would be even greater than the half-degree value indicated
here.

On the Natural Use of Optokinetic Nystagmus

Earlier I suggested that one aspect of Llewellyn’s ocular drift cancellation
theory might be on track. That aspect is its relation to the laboratory
phenomenon of optokinetic nystagmus and how this reflex might func-
tion for an organism moving through its natural environment. Opto-
kinetic nystagmus has two parts. If an individual is placed within a
textured drum rotating around a vertical axis, his or her eyes first rotate
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using pursuit vision to follow textures, then saccade rapidly back to
{or beyond) their initial position to pick up the motion. This pattern
of relatively slow pursuits and rapid saccadic flicks alternate so long
as the drum rotates. The pursuit eye movements take advantage of the
field-holding reflex of the accessory optic system (Simpson 1984), and
the saccades occur often when no further mechanical rotation is possible,
Such phasic responses occur involuntarily and have been found in
every mobile-eyed vertebrate tested (Walls 1962).

How optokinetic nystagmus might serve directional guidance is as
follows: The individual fixates an object in the environment off the
path of forward movement. The eye rotates in its socket during the
individual’s locomotion, holding the object at the center of the field of
view. The most rapid movement through the plane of sight is with the
direction of eye rotation. When the eye rotates sufficiently or when
other objects move through the plane of sight with sufficient velocity,
the eye saccades quickly in the opposite direction. If the individual is
on a linear path and if saccadic rotation is not quite extensive enough
to align the eye with the path of movement, then the process repeats.

If saccadic rotation overshoots the direction of movement, then the .

process reverses to the other side. Curvilinear locomotion complicates
the situation not at all because the absolute direction of the line of
sight at the end of the saccades is not pertinent to either the nystagmus
of the differential motion parallax. In this manner, direction finding is
well served by a well-understood eye-movement system. Moreover,
the changes in the optic array pull the eyes of the observer in the
direction of motion. '

On Invariance

The first nine chapters of this book were chock-full of discussion about
invariance. In these later chapters that discussion subsided somewhat,
and it is time to reconsider the relation of invariance to descriptions
of optic flow. Consider first the concentric toroids described in chap-
ter 12. These toroids are oculocentric, wrapped in figure eights, and
rotated around the path of the eye of the moving observer. They are
observer-relative descriptions of potential optic motions. Any object or
texture in three-dimensional space can be assigned an optic vector with

one assumption and three variables. The assumption is that the objects -

in the world are not moving, and the variables are the object’s instan-
taneous distance and direction from the observer and the observer’s
trajectory through the environment. These specify all flow. But these
geometric formalisms yield variables, not invariants.

The toroidal description has the flavor of a medieval view of the
universe. That is, it was thought that the solar system and the stars
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beyond it were placed on nested crystalline spherical shells that slid

- frictionlessly past one another. The sun, moon, planets, and stars were
mounted on the separate shells, but viewers could see only the celestial
bodies, not the shells themselves (Koyré 1957, Kuhn 1957). Similarly,
in the parallax descriptions of flow that I have given, an observer can
see only the objects and textures instantaneously “mounted” on the
toroids; the observer cannot see the motion of the toroids themselves
as they evert around the instantaneous axis of observer movement.
Thus, in a manner that Plato might appreciate, the nested toroids are
descriptions of the motions of abstract space, whereas optic flow is
about the place of objects in a particular environment cluttered in a
particular way. They generate ordered relations, but flow patterns are
unique to each environment.

How can toroidal relations be converted into invariants to be used
by the visual system? Given the descriptions above and a stable fixation
point against which the relative motions of objects near and far can
be compared, probabilism enters. That is, because a viewer cannot be
assured of the relative instantaneous distances of objects while moving
through the environment, the viewer must sample the optic array.
Provided that a viewer is looking at an object, other objects that are
half or less than half the instantaneous distance between the object
and the observer will be moving at a retinal velocity that cannot be
matched (in the opposite direction) by any object at any distance, no
matter how far away. Thus the most rapidly moving objects in the
retinal array will almost surely be moving more rapidly than and in
the direction opposite the observer’s movement. Expressed more
formally,

N> —F,

where N is the velocity of near textures (and given positive value) and
F that for far. Such a rule knows few bounds. It is true regardless of
whether a viewer is on a straight or curved path; it is an inequality
invariant in optic flow.

On Perceptual Choice of Invariants

An observer moving through an environment has a choice of invariants
to use to guide his or her way. One, proposed by Calvert and Gibson,
is the focus of expansion—a topological invariant and an instance of
Brouwer’s theorem. This theorem states that mappings of elements
onto themselves (textures in the optic array projected from adjacent
station points) have a fixed point whose coordinates have not changed.
The other invariant is differential motion parallax. Given that there is
some evidence that supports the focus of expansion for flying or, more
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generally, for moving rapidly through environments but that the results
of experiments 9-11 support differential motion parallax, observers
again appear to have a choice among invariants in the task of way-
finding, in part depending on their speed. This is a situation like that
described in chapter 9, where cross ratio and vector displacement pat-
terns were contending invariants.

And most surely there are more cases than just these two in which
multiple invariants have to be sorted out. It seems probable, in fact
almost certain, that this may be the general perceptual situation, given
a rich environment or even a rich experimental setup. If so, then this
has serious implications for perceptual theories, particularly for those
called direct and indirect. Consideration of them is the focus of chap-
ter 14, untangling the problems of multiple invariants that of chapter 15.

1A%

Classes of Perceptual Theories

A twentieth-century realist cannot ignore the existence of equivalent de-
scriptions: realism is not committed to there being one true description
(and only one).

Putnam (1978, p. 50)
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Direct and Indirect Perception

It is time now to shift gears. Over the last eight chapters [ have dealt
with fairly hard-nosed computations and data. The brunt of all this
was the discovery that there can be, and probably almost always are
in suitably complex perceptual situations, multiple invariants in the
optic array that specify the same object properties. What is left to my
presentation is an application of this new fact to perceptual theory,
which is my plan over the next two chapters. In this chapter 1 review
classes of perceptual theories, and in the last I reformulate them and
promote something new.

Two broad types of theory have been bruited about in the psycho-
logical and philosophical literature, most typically with respect to vision.
These are the direct and indirect theories of perception, and they have
generated a great deal of heat. My purpose in this chapter is to outline
why 1 find both inadequate and why so much confusion surrounds
them. The confusion is caused by the mismatch of attributes used to
differentiate the two theories. Because definition and redefinition of
terms have been rampant, 1 believe that the best approach to under-
standing the issues is historical. Through history we can see the terms
appear, disappear, and reappear.

A Selective History

Most students of vision know direct perception as an epistemological
position against a cognitive approach to perception. The cognitive ap-
proach typically employs the concept of inference or some cognate,
such as problem solving or ““taking into account.” They know further
that this position was held by Helmholtz, but it may be a surprise to
many to find that the debate is much older. For example, Mill (1843,
p. 420) addressed these same issues:

In almost every act of our perceiving faculties, observation and
inference are intimately blended. What we are said to observe is
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usually a compound result, of which one-tenth may be observation,
and the remaining nine-tenths inference.

T affirm, for example, that | hear a man’s voice. This would pass,
in common language, for a direct perception. All, however, which
is really perception, is that | hear a sound. That the sound is a
voice, and that voice the voice of a man, are not perceptions but
inferences. '

Mill was clearly not in favor of direct perception. Instead, he believed
perception to be inferential, what we would now call indirect. But in
Mill we find the same terms used in the same ways as we use them
today. In fact, the use of these terms is even older. Helmholtz and Mill
lie not at the beginning but in the latter half of the terms’ chronology.

Nine Issues Concerning Direct Perception

How many ways might perception be direct? What follows is a brief
presentation of nine issues relevant to analyses of direct perception,'
after which | probe them in more depth. All were considered disqualifiers
of directness and hence characteristics of indirect perception. 1 present
them in chronological order as they appeared in the philosophical and
psychological literature from the seventeenth century to the present.

1. Judgment and Inference. Direct perception has no thoughtlike pro-
cesses that are part of it. This is perhaps the oldest and most important
aspect of the traditional debate. In the English-language literature, Locke
originated this view, believing that some (but not all) perception is
judgmental. The nature of these judgments changed with Helmholtz,
but inference did not. Inference continues to be important today (for
example, Rock 1983 and Hoffman and Richards 1984).

2. Slowness.  Direct perception is fast, not slow. Locke regarded rapid
perception as a necessary but insufficient criterion for directness; Hoch-
berg (1982) and Norman (1983) regarded slowness as a disqualifier,

3. Learning.  Direct perception is innate, other perception the outcome
of acquired associations. Early aspects of this issue appeared in Locke,
but it did not come to the fore until Mill and Helmholtz.

4. Mediation. Direct perception is unmediated. After inference, per-
haps the most important idea in the history of perceptual theories is
mediation. The stages of description from physical object to visual
percept, if perception is to be considered direct, cannot include inter-
mediate steps involving other modalities or constructs. This crucial
concept has at least four loosely allied meanings, One is the tertium
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quid, a Latin phrase meaning a third entity that stapds between th‘e
physical object and perception of it. Many pre—tvyentleth—centgry phi-
losophers employed a tertium quid-—Locke’s was in the form of ideas—
and this view survives today in certain descriptions of mental repre-
sentation. This notion might also be spoken of as nonresonance of the
organism to certain aspects of the environment and as resonance only
to representations, tertia quid, or the like.”> The subdiscipline of 1nfc?r—
mation processing has recast this idea into a tlhird. form., the plurality
of stages in perceptual process. Direct perception is .typlcally thougl?lt
to be single staged and indirect perception as mulhst_aged. And t.hIS
generalizes to a fourth idea, computational difficulty: Direct perception

" is considered computationally easy, indirect perception computationally

difficult. Epstein (1981) has promoted plurality of stages and- U_llman
(1980) and McArthur (1982) have promoted computational difficulty.

5. Suggestibility. Direct percepts are irresistil.ale';_they run off‘ auto-
matically. Both Locke and Reid believed irresistibility to be a criterion
for directness; Helmholtz also considered it. And automatic processing
is a popular research issue today. Perception that is. not c%irect, on the
other hand, is suggestible and subject to the whims of intention. Berkeley
originated this idea, Brown and Mill picked it up in the .mneteen’Fh
century, and it continues today in cue theory—the idea, dlscusseFl in
chapter 3, that proximal measures are probabilisticall‘y related to distal
objects. But some positions against direct perception (Fodor 1983,
Pylyshyn 1984) are also against suggestibilityi Because of the alleged
modularity of mind, some percepts are incorriglbleland cannot be mod-
ified by thought processes—they are cognitively 1mpenetrab1e: . |

6. Awareness. Direct perception occurs without awareness, indirect
perception with it, Because we generally are 1:10t aware of. processes,
most perception must be direct. Reid and Bailey took this position;
Helmholtz thought it irrelevant. Even Gibson chscussec} awareness.

7. Physical Distance. Direct perception occurs from stimulation con-
tacting the individual. Indirect perception occurs whe.n t.he sense organ
is not in physical contact with a physical object. This idea may have
first appeared in Brown (1820, p. 54):

A distinction in this respect is very commonly made by philoso-
phers, of external causes which act directly, as in smell, taste and
touch, and others which act through a medium, as in hearing and
vision.
In a modern interpretation of the issues at stake, this idea is confusi.ng.
It confounds mediation (a mental operation) with medium (physical
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stuff). This idea recurs periodically (see Heider 1926, 1958, and Fodor
and Pylyshyn 1981), but I will not consider it in detail. :

8. Decomposition. Direct percepts are of wholes. If a stimulus is
decomposed into primitive units or features by a perceptual process,
then perception is not direct. Decompositions reveal intermediate steps
in the process. Ullman (1980) proposed this idea, although he cagily
limited himself to meaningful decomposition. The idea is, in part, an
affirmation of Titchener’s (1906) atomistic approach to perception.

9. Information Insufficiency. Direct perception proceeds from ade-
quate information. If necessary information is not present in the stimulus,
perception is indirect. This is the central idea in Gibson'’s (1973a, 1979)
theory. A corollary is that in indirect perception information is added
during the perceptual process; it “goes beyond the information given”
(Bruner 1957) or involves “taking into account” (Epstein 1973).

Other issues could be added to these nine,® and it should be clear
that these are not independent. But I think that the cloudiness of current
debate over these classes of theories is a result of the intermixing of
these issues, Consider the literature in some detail.

Locke and Berkeley

Of the nine terms assaulting direct perception, Locke used the first five,
In his Essay Concerning Human Understanding (1690, book II, chap. IX,
para. 9), he discussed perception as a species of judgment. The issue
was Molyneux’s problem—a conjecture about the supposed inability
of a blind person given sight to perceive shape.* According to Locke,
shape “judgment [is] apt to be mistaken for direct perception’” because it
is “performed so constantly and so quick.” But speed is not a sufficient
criterion for directness. Locke reasoned that through habit (learning)
our perceptions are unconsciously changed. Judgmental processes then
entered Locke’s discussion, summoned to reject direct perception of
certain but not all things we perceive.

Also in Locke (1690, chap. VIII, para. 26) is mediation. He suggested
that some qualities of objects are “immediately petrceivable,” others
“mediately perceivable.” He did not pursue this distinction in great
detail, but in it are the seeds of all further debate. Locke suggested
only that some qualities of objects appear to have the “power” to
invoke immediate results in the mind, whereas others can work only
indirectly. In several places he hinted that distance and shape in vision
may be only mediately perceivable. Such tidbits aside, mediation as a
tertium quid overrides his whole thesis. The central notion in Locke’s
theory of mind is the idea: “External objects furnish the mind with the
ideas of sensible qualities, which are all those different perceptions

Direct and Indirect Perception 227

they produce in us” (1690, chap. I, para. 5). Sensation is thus “the
“great source of most of the ideas we have” (1690, chap. I, para. 3). In
anticipation of much twentieth-century debate, Locke suggested that
sensation stands as a third entity between reality and the mind; sensory
ideas bridge the Cartesian gap between physical essence (qualities) and
mental essence (percepts).

Finally, Locke (1690, chap. IX, para. 1) reasoned that “in bare naked
perception, the mind is, for the most part, only passive; and what it
perceives, it cannot avoid perceiving.” Bare naked perception is not
suggestible and therefore, by association with the rest of his theory,
must be direct.

Locke presented a complex view, He used five criteria~—judgment,
speed, learning, mediation, and suggestibility—to reject the notion that
all perception is direct; some perception is not direct. Berkeley agreed
on the split between direct and indirect perception, but he adopted
only Locke’s ideas of mediation and suggestibility in his Essay towards
2 New Theory of Vision (Berkeley 1709). Satisfied with Locke’s notion
of primary and secondary qualities but dissatisfied with the clarity of
his distinction between mediate and immediate, Berkeley reasoned
(1709, para. 50}

In order, therefore, to treat accurately and unconfusedly of vision,
we must bear in mind that there are two sorts of objects appre-
hended by the eye—the one primarily and immediately, the other
secondarily and by intervention of the former. Those of the first
sort neither are nor appear to be without the mind, or at any
distance off. They may, indeed, grow greater or smaller, more
confused, or more clear, or more faint. But they do not, cannot
approach or recede from us. Whenever we say an object is at a
distance, whenever we say it draws near or goes farther off, we
must always mean it of the latter sort, which properly belong to
touch, and are not so truly perceived as suggested by the eye.

Thus, to be more concrete, color is immediately perceived, according
to Berkeley, but distance and figure are not. Instead, the last two are
mediated through touch and kinesthesis. In a later essay, The Theory
of Vision, or Visual Language, Vindicated and Explained (1733, para. 42),
Berkeley elaborated the theme of mediacy and immediacy, but clearly
separated Locke’s ideas of judgment and inference from his own. In
place of inference, suggestibility was substituted:

To perceive is one thing; to judge another. So likewise to be sug-
gested is one thing, and to be inferred another. Things are suggested
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and perceived by sense. We make judgments and inferences by
the understanding. What we immediately and properly perceive

by sight is its primary object—light and colours. What is suggested,

or perceived by mediation thereof, are tangible ideas—which may
be considered as secondary or improper objects of sight. We infer
causes from effects, effects from causes, and properties from one
another, where the connexion is necessary,

Two points are critical. First, Berkeley’s theme, that kinesthesis and
touch carry much of the burden for vision, is at the base of mediation.
For him, the tangible ideas of space and form (those through the sense
of touch) mediate visual perception of figure and distance; Berkeleyan
mediation goes through another modality. Second, perception is not a
judgmental process. Instead, we either perceive immediately (as with
color) or other senses “suggest” and we perceive mediately (as with
distance and form); but only the mind infers. In this manner, Berkeley
proposed a mediated but noninferential theory of visual perception.
Inference was a faculty of understanding, which he saw as flawless

and independent of potentially unruly associations; suggestions of the

secondary objects of vision (figure and space) are fraught with flaws.

Neither speed nor learning were important in Berkeley’s theory, but
ideas were at least as important as they were to Locke. For Berkeley,
visible ideas and visible appearances were the same (Pastore 1971).
But because nature and all physical things are but a reflection of the
ideas of the mind (Berkeley 1713), there is no need for a tertium quid.
Ideas exist everywhere.

Porterfield, Reid, and Bailey ‘
Mediated perception and hence indirect perception have dominated
Western European thought from Locke, Molyneux, and Berkeley
through to the present day. But dissidents from a received view are
never hard to find. Among the first to dissent was Porterfield in his
Treatise on the Eye, the Manner and Phenomena of Vision (1759). Por-
terfield said (p. 299), in a partial anticipation of Kant:

The judgments we form of the situation and distance of visual
objects, depend not on custom and experience, but on original,
connate, and immutable law, to which our minds have been sub-
jected from the time they were at first united to their bodies.

For Porterfield, visual perception of distance and form were unin-
ferred, unlearned, unmediated, unsuggested. He disbelieved Berkeley's
views on the inapplicability of geometry to visual perception, and he
was nonplussed by Descartes’s separation of mind and body. If the
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Cartesian distinction were true, the soul could “never perceive the

"external bodies themselves’” (1759, p. 356), making perception forever

impossible.

Reid was more tentative than Porterfield but elaborated the idea of
immediacy of perception in his Essays on the Intellectual Powers of Man
(1785, p. 57). Ideas and suggestibility remained important, awareness
entered as a concern, and speed reappeared in the discussion:

If, therefore, we attend to that act of our mind which we call
perception of an external object of sense, we shall find in it these
three things: First, Some conception or notion of the object per-
ceived. Secondly, A strong and irresistible conviction and belief of
its present existence. And, thirdly, that this conviction and belief
are immediate, and not the effect of reasoning,

Arguing against judgment and inference in perception, Reid stated
(1785, p. 61) that believing what one perceives “is equally immediate
and equally irresistible. . .. No man thinks of seeking a reason for be-
lieving what he sees; and before we are capable of reasoning, we put
no less confidence in our senses than after.” Lack of awareness of
intervening stages was paramount to Reid. But notice that the force of
the argument is directed against Locke and judgment, not Berkeley and
suggestibility. Associations could still make percepts irresistible, even
though they might mediate them. Moreover, Reid’s use of “immediate’
appears to implicate only speed.

The idea of speedy, irresistible, but mediated perception emerged
when Reid (1785, p. 151) discussed Locke’s distinction between primary
and secondary qualities:

There appears to me to be a real foundation for the distinction,
and it is this: that our senses give us a direct and distinct notion
of the primary qualities, and inform us what they are in themselves;
but of the secondary qualities, our senses give us only a relative
and obscure notion.

Because Reid counted extension, figure, motion, solidity, and softness
among the primary qualities and sound, color, taste, and smell among
the secondary, he proposed something quite different from Berkeley.
For Berkeley, perception of figure and extension were mediate and that
of color was immediate; for Reid, figure and extension were direct and
immediate and color immediate but not direct.

Reid’s position confounded many. Brown (1820), Hamilton (1858),
and Bailey (1855) all tried to make sense of what he said, and Mill
(1842, 1865) and Bailey (1855, 1858) quibbled over interpretations. The
median position is that of Hamilton (1859, p. 80):
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I beg you to keep in mind the necessary contrasts by which an
immediate or intuitive is opposed to a mediate and representative
cognition, The question to be solved is,—Does Reid hold that in
perception we immediately know external reality, in its own quali-
ties, as existing; or only mediately know them, through a repre-
sentative modification of the mind itself?

Hamilton answered that Reid held both positions, straddling the
direct/mediated issue. But more interesting is that in Hamilton we find
a new distinction: Intuition is associated with the immediate, direct
view of perception and representation with the mediate, indirect view.
Reference to the former is found in Helmhoitz’s later work and to the
latter in Gibson's work.

The most forthright of dissidents, however, was Samuel Bailey. Bailey
was vehemently against all extant theories of perception: “I contend
for the direct perception of external objects against Hobbes, Locke,
Berkeley, Hume and others” (Bailey 1858, p. 10). He also suggested

that Reid's advocacy of direct perception had not gone far enough

(1858, p. 11):

You will particularly observe, on a close inspection, that I maintain

the direct perception of external objects in a much more rigorous
sense than many or most of the philosophers of the Scottish school.
They, amongst other things, contend for an irresistible belief in
the existence of the external world; I, on the contrary, for a direct
knowledge of it

Bailey allowed no tertium quid because our awareness allows for
none. He aiso pointed out, foreshadowing the work of Walk and
E. Gibson (1961), that many young animals move about without prior
tactile experience with surfaces in the world. Thus in these creatures
there is no chance of touch mediating vision, in Berkeley’s or any other
sense. Bailey was perhaps more eloquent in his attacks on others than
in expounding how perception actually occurred. In Bailey, however,
we find a spirit close to Gibson. Bailey’s position was simple and clean
and a deceptively easy mark.

Mill gnd Helmholiz

Mill criticized Bailey, especially in the latter’s critique of Berkeley. Mill
(1842, p. 251) was well aware of the problems of oversimplifying issues
and accused Bailey of slipperiness in the use of the term ““Perception,
a word which has wrought almost as notable mischief in metaphysics
as the word Idea.”® Mill was particularly alert to the use of awareness
as a criterion for discussing perceptual process. Arguing for Berkeley’s
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theory of visual signs (later cues) that suggest what we perceive, Mill
dismissed awareness (1842, pp. 254, 259):

The distance of an object is not “perceived” directly, but by means
of intermediate signs; not seen by the eye, but inferred by the
mind . . . [and] when the suggesting power of the sign has been
often exercised, our consciousness not only of the sign itself, but
of much of what is signified by the sign, becomes much less acute.

With increase in associative strength, awareness declines and sug-
gestibility increases. Mill took seriously Bailey’s arguments concerning
early behavior of young animals but argued that there was no evidence
that animals used “sight itself”” (1842, p. 261) rather than signs or that
human infants behave like young animals even when their “organs
have attained sufficient maturity” (1842, p. 263). In general, Mill's
theory of perception was almost identical with Berkeley’s, except for
the reinjection of inference into perception and for a quibble over
Molyneux’s premise (Pastore 1971).

Next and central to any discussion of indirect perception is, of course,
Helmholtz. Like Locke and Berkeley, Helmholtz had a place for direct
perception. But unlike Berkeley, he {1868, p. 200) thought objects in
depth were directly perceived: “It is important to remember that this
perception of depth is fully as vivid, direct, and exact as that of the
plane dimensions of the field of vision.” The issues of directness for
Helmholtz concerned at least four factors: suggestibility, learning, and
a compound of judgment and lack of awareness, usually translated as
“unconscious inference.”

Consider suggestibility and learning. With regard to the first Helm-
holtz (1868, p. 219) claimed: ‘

Conclusions in the domain of our sense perception appear as in-
evitable as one of the forces of nature, and their results seem to
be directly perceived without any effort on our part.

But lack of suggestibility did not mean that perception was immutable
to experience, In fact, on the contrary, learning became a central attribute
in the debate over direct and mediated perception. Helmholtz (1868,
pp. 213-214) took a strong position against the intuitive (or direct)
theories of Porterfield and Bailey:

It follows that the hypotheses which have been successively framed
by the various supporters of intuitive theories of vision, in order
to suit one phenomenon after another, are really quite unnecessary.
No fact has yet been discovered inconsistent with the empirical
theory...and...every form of the intuitive theory has been
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obliged to revert to [experience] when all other explanations
failed. . ..

It is impossible to draw any line in the study of our perception
of space that will sharply divide those which belong to immediate
awareness from those which are the result of extended experierice.
If we attempt to set such a boundary, we find that experience
proves more exact, more direct, and more specific than immediate
awareness and, in fact, proves its superiority by overcoming the
latter.

Two things stand out in this discussion. First and oddly, perception
is more direct through experience than through immediate awareness.
Second, Helmholtz attacked a straw man. He regarded intuitive (direct,
innate) theories as unable to account for all aspects of perception and
as having to resort to learning but regarded empirical (associative,
learning) theories as accountable for everything. Yet this is no reason
not to accept an intermediate view allowing for both innate and learned
attributes. Moreover, the omnipotence of the empirical theory as Helm-
holtz presented it is not desirable in a psychological theory today.” -

The centerpiece of his views on perception is the much-discussed-

concept of unconscious inference. Helmholtz (1868, p. 217) was aware
that inference is usually reserved for the “highest of the conscious
operations of the mind.” That is why he prefixed it with “unconscious,”®
But he then stated:

There appears to me in reality only a superficial difference between
the inferences of logicians and those inductive inferences whose
results we recognize in the conceptions we gain of the outer world
through our sensations. The chief difference is that the former
inferences are capable of expression in words, while the latter are
not.

As in logic, if the grounds of visual perception are sure, perception
will be veridical; if they are not sure, perception will be faulty. The
feature of unconscious inference that allows separation from direct
perception as Gibson used the term is that some grounds for perceiving
may not be in the optic array or in the biological design of the visual
system. Memory and reasoning can be invoked. But if all grounds are
in the stimulus and system design, then unconscious inference and
Gibson'’s direct perception are the same. | will not address further the
unconscious, or nonawareness, issue in perception. Instead, consider
inference, From Helmholtz and Mill we get the idea of perception as
inductive, and it is worth investigating this idea further.

For our purposes logic divides into deductive and inductive branches.
Despite common usage, deduction and induction have nothing inher-
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ently to do with the particular, the general, and the manner of going
between them (see, for example, Skyrms 1975). Instead, the key dif-
ference is in probability. Deductive inferences are like proofs in math-
ematics; they are either valid or invalid, with no room for chance.
Inductive inferences, on the other hand, vary from strong to weak,
depending on epistemic probability; essentially, they are our prediction
about what will happen based on our knowledge at a given time. In
part because of Hume (1739) and Popper (1962), induction has fallen
on hard times as an example of logic, at least as defined in common
parlance; we barely know how it works at all, Baldly put, induction is
simply guessing. Some of it is good guessing, but it is guessing
nonetheless.

For perception to be inductive it has to be a chancy business; percepts
are thought not assured on the basis of information given.® Sense data
talk and the arguments from illusion are thought to reinforce this idea.
My point in this book, however, is that not all of perception has to
work this way. Some perception might even be called deductive. This
is an idea | pursue in chapter 15.

Helmholtz, like all his predecessors, allowed for direct perception
but did not allow for clear demarcation between what is and what is
not. The implication was that most perception by adults is inferential.
But both direct and inferential perception imply a real world, and this
was not an accepted theme in many philosophies, particularly that of
the English at the end of the nineteeth century. The English, in a unique
departure from empiricism, were dominated by the idealism of Hegel.

Moore, Russell, Ayer, and Austin

The first break with idealism was Moore’s, followed quickly by Russell’s
at the turn of the twentieth century. Together they established the
analytic school of philosophy and also generated the concept of sense
data, discussed in the first chapter. Sense data are at the heart of the
“causal theory of perception,” an attempt at the synthesis of common
sense, analysis, and the older British tradition of Mill. The causal theory
also possessed rudiments of an information-processing account of per-
ception. Its basics were expounded by Russell (1927, p. 197):

Common sense holds—though not very explicitly—that perception
reveals external objects to us directly: when we “see the sun,” it
is the sun that we see. Science has adopted a different view, though
without always realizing its implications. Science holds that, when
we “see the sun,” there is a process, starting from the sun, traversing
the space between the sun and the eye, changing its character
when it reaches the eye, changing its character again in the optic
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nerve and the brain, and finally producing the event which we

call “’seeing the sun.” Qur knowledge of the sun thus becomes
inferential; our direct knowledge is of an event which is, in some
sense, “in us.” This theory has two parts, First, there is the rejection
of the view that perception gives direct knowledge of exteral
objects; secondly, there is the assertion that it has external causes
as to which something can be inferred from it. The first of these
tends towards skepticism; the second tends in the opposite direction.
The first appears as certain as anything in science can hope to be;
the second, on the contrary, depends upon postulates which have
little more than a pragmatic justification.

Again, direct and inferential perception co-occur, but this time as
part of the same process. According to causal theory, we directly perceive
sense data, but we do not directly perceive objects; those are known
only through inference. The major issue that dominated the philosophy
of perception for fifty years thereafter was justification of inference.
Ayer (1940, 1956) played a particularly dominant role,

Austin (1962) was among the first to question causal theory. In keeping

with the analytic tradition, his critique of Ayer and of causal theory -

was more about words than perception. Driven by common' sense,
Austin chose to analyze the terms “direct” and “indirect”—the latter
had made its belated appearance in Ayer (1956). Ignoring 250 years
of tradition, Austin suggested that “direct”” implies “direction” and line
of sight and that “indirect”” implies binoculats or periscopes that bounce

light rays around in several directions. In fact, “indirect” is not at home -

in discussion of the other senses, of television, of cloud chambers, or
of much else. Austin (1962, p. 19) thus rejected Russell’s “scientific”
analysis and concluded: '

It is quite plain that the philosophers’ use of “directly perceive,”
whatever it may be, is not the ordinary, or any familiar, use; for
in that use it is not only false but simply absurd to say that such
objects as pens or cigarettes are never directly perceived.

I dislike this style of argument. It has the two prongs of appealing
to the commonsense use of words and of shaming those who ‘do not
use them that way, however consistent that use may be. Such arguments
do not help an understanding of perception at all. Careful use of words
is a laudatory goal in this case, but it elucidates the issues little more
than does enunciation, cleanliness, or any other personal habit.

Of all philosophers supporting direct perception, however, Austin
appears to have influenced Gibson most.'® And because Austin’s analysis
was linguistic rather than logical and historical, Gibson could use the
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terms ““direct’”” and “indirect” as he chose. Two things became important

to Gibson'’s theoretical analysis: Against Berkeley and Helmholtz, Gib-
son denied any form of mediation, judgment, or inference in normal
perception, where normality conditions exclude mirrors, telescopes,
Ames rooms, and pictures; and he declared that information in the
optic array was sufficient for normal perception.' The latter is the only
positive suggestion new to Gibson. Its central concern is a mapping
between proximal and distal stimuli, a topic at the core of the next
chapter. Before considering mappings, however, let me make a final
assessment of the other issues surrounding direct perception with an
eye to this final one—information adequacy.

An Assessment of Eight Disqualifiers of Direciness

It is convenient to divide the issues into two groups of four. The first
group contains those issues [ believe not relevant to the current debate
over direct and indirect perception: slowness, learning, awareness, and
physical contact. The second group consists of suggestibility, decom-
position, mediation, and inference, which I try to relate to information
sufficiency.

Irrelevant Issues

Let me start by justifying dismissal of the first set. Locke (1690) was
first to suggest that slowness implied indirect perception, and Hochberg
(1982) and Norman (1983) were among the first to explore this idea
experimentally. But speed of perception can be a difficult thing to mea-
sure, Reaction-time experiments assume some point in time from which
perceptions start and a point from which all stimulus information is
present. This latter assumption is inappropriate for a moving stimulus.
Reaction time is an almost completely useless dependent measure for
studies of motion and change because the visual system continues to
accrue information over tirme.

Learning is next. Helmholtz (1868) was first to juxtapose learning
and direct perception. He contended that “intuitive” theories relied on
innate predispositions of vision. Although this criticism can be leveled
at Porterfield and Bailey, it is not relevant to twentieth-century dis-
cussions. Eleanor Gibson (1967) and James Gibson (1979) redefined
the issues of perceptual learning as the acquisition of new abilities to
pick up information through differentiation. To be sure, Walk and Gib-
son (1961) denied learning in the perception of objects laid out in depth:
They demonstrated what Bailey (1855) discussed, that infants and young
animals can perceive objects in depth with no previous coordinated
visual and tactile experience. But this research effort falsified ideas from
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Locke and Berkeley. Walk and Gibson suggested that not all of what
is seen is learned; they did not suggest that all of what is seen is innate.

Third, there is awareness, a central issue to much of psychology, but
[ do not believe it relevant here. We may or may not be aware of
perceptual processes, pancreatic processes, or pulmonary processes. But
because we may be aware of stomach growls or wheezes does not
make these indirect digestion or indirect respiration, Why should
awareness make perception indirect? Moreover, information is not a
term comfortable with the idea of awareness. In the experiments reported
here, for example, percipients were aware of rigid and nonrigid planes
and of three-dimensional environments. But it seems inappropriate to
me to suggest that they were either aware or unconscious of the cross
ratio, the index 4 measure of density, or differential motion parallax.
As abstract formalisms that reflect regularities in the world, these do
not seem to be the stuff that can fill or not fill awareness.

And finally, it is not relevant that there is physical distance between
objects and eyes or a medium through which information is presented.
Indeed, vision and audition are distal senses; taste, touch, and kinesthesis
proximal (and smell dependent on definition). But a medium is not a
mediator; it is a transducer. The transduction of information through
air and space makes perception no more indirect than the transduction
of information through peripheral nerves.

Relevant but Tangential Issues

Four issues of some import to direct and indirect perception are sug-
gestibility, decomposition, mediation, and inference. Consider first sug-
gestibility. From Locke (1690) we get the idea that direct visual perception
is not suggestible, it is an automatic process that runs off without check
or modification; and from Berkeley (1733) we get the idea that mediate
perception is suggestible, proceeding on the grounds of information
from sources other than the optic array. But this clean pairing is muddied
by Reid (1785), Mill {1842), and Helmholtz (1868). All considered some
perception to be both inferential and nonsuggestible. For Mill, inferences
are built up through associations that have become so strong that there
are no alternatives. The effects of the Ames room and the trapezoidal
window are cases in point: Inferences might be made about the geometry
of the setting that are difficult to contravene.

There is, however, something cogent about the idea that suggestibility
should have a place within a theory of direct perception: If information
specifies—a term much stronger than suggests—something about a par-
ticular object that is useful to an individual, then that individual ought
to use that information in actions with it. I claim that the individual
may choose other information that specifies the same property, but as
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I discuss in the final chapter, this is not entirely consistent with direct
perception.

Decomposition is another relevant, but I think tangential, aspect of
the direct/indirect debate. Ullman (1980) proposed that information
for perception, if it is direct, cannot be “meaningfully” decomposed
into more elementary primitives. And Michaels and Carello (1981)
claimed that direct perception is the study of higher-order invariants,
which are presumably those not decomposed into primitives useful to
the individual. I would claim, however, that the level of order is not
so important as the demonstration of perceptual utility; thus one need
and need only attain a level at which relational information is percep-
tually useful, be it variant or invariant. Direct perception does not claim
that variable information, even a variable within an invariant, is un-
registered by the perceptual system. Instead, it claims only that infor-
mation is adequate for perception without cognition.

Decomposition also has stage-theoretic implications: It is often said

‘that direct perception is a one-stage process and that indirect perception

is multistaged. Although defenders of direct perception have stated
this point of view (Runeson 1977, Michaels and Carello 1981), it seems
to me that there are too many unexamined assumptions about what
constitutes a separate stage in a perceptual process to make a meaningful
statement about it. Physiology bats last in determining stages; but be-
cause it is equally foolish to deny visual physioclogy or to claim that it
is sufficiently known in complex perceptual acts, this appeal carries no
weight,

Mediation is a third relevant issue, but none in the whole set is
trickier; it can have myriad sources. Consider three, First, for Berkeley,
mediation occurs when kinesthesis and convergence educate us about
depth when we normally and improperly impute it to vision. This leads
us back to the issue of suggestion, which has already been considered
and rejected. Second, mediation can come from memory and learning.
In Mill and Helmholtz we find that learned associations among attributes
of objects affect perception. But again, both Eleanor and James Gibson
construed learning such that mediations from stored patterns do not
enter the process; instead the ability to differentiate information in the
optic array gets better. Given that learning can be construed favorably
on behalf of both sides of the debate, it cannot distinguish between
them. And third, Gibson (1979) stated that perception is not mediated
by representations (or pictures) external or internal; there is no tertium
quid between perceiver and object. But Gibson's-idea of representation,
as a re-presentation of object attributes, is at such variance with the
rest of cognitive science that little light is thrown on the debate, unless
the issue of inference is considered, which I discuss in what follows,
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Thus it seems to me that, because mediation can have so many meanings, -
little is gained by its use. As suggestibility, it comes clogest to bearing -
on issues of current import,

Finally, consider inference. From Locke, Mill, and Helmholtz came
the idea that perception is an inferential process. But if all premises of

as inference. And inference is the same as direct perception if all premises
for it are based on information in the optic array or in the visual systemn’s
structure. The remaining issue, adequacy of that information, is the
topic of the final chapter.

to reconsider the issue of information efficacy.

Overview

A history of the issues involved in debates over direct and indirect
perception was pursued from Locke through Austin and relates to the
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Directed Perception

-

At the beginning of chapter 1 I posed a series of questions: How is it
that we make sense of the visual patterns that surround us? Why does
everyday perception work so well? And what is the nature of information
in our environment such that it has meaning for us? | have answered
only the third of these, emphasizing the importance of structural re-
lations among elements projected to the eye over space and time, In
particular, I pursued two instances of flow—one for a moving object
and a generally stationary observer and the other for a stationary en-
vironment and a moving observer, Cross ratios, density, ordered dis-
placement vectors, and differential motion parallax by no means exhaust
the information that we might look at, but at least they are examples
not typically pursued by vision researchers. They are also examples in
which motion yields trustworthy grounds for perception.

It is time now to consider briefly the first two questions. The first is
a general question about process—How is sense made of what is pro-
jected in the optic array? The second is about the surety of perception.
Both can be considered subspecies of perhaps the most important ques-
tion asked about visual perception (Koffka 1935): Why do things look
as they do? The seeming simplicity of this query masks its depth. All
theories of perception must address the issue of information in light of
phenomenology. In the previous chapter I presented a historical outline
of two classes of perception—direct and indirect—but I did not relate
them to Koffka’s query or to issues about process and surety. Those
are dealt with here, alas in an all-too-sketchy manner. But the larger
goal of this chapter is to present a third class of perceptual theory and
the necessity for it. [ also compare it with the direct and indirect theories
on the basis of information available in the optic array. This new class
has so far gone unnamed, but it is implicit in various works. I'call it
directed perception, focusing on the idea that observers are directed at
- and select among multiple sources of information that may specify a
given stimulus. Attributes of both direct and indirect approaches can
be found in directed perception, but the most important attribute is
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quite different from both. After treating this, I relate all three classes
to Koffka’s query and related questions.

Meaningful comparison of the three theory classes can take place
most satisfactorily, and perhaps only, within the framework of one of
the nine issues broached in the previous chapter—information suffi-
ciency for perception. None of the other eight, it seems to me, provide
well-defined grounds for separating them: Slowness, learning, aware-
ness, media, suggestibility, decomposition, mediation, and inference,
in my view, simply do not get at the guts of why we perceive the way
we do, Only the discussion of mappings between information and
object properties in the environment approaches this goal.

Information-to-Object Mapping

At the core of modern versions of perceptual theory—direct, indirect,
or directed—are assumptions about the way information is mapped
onto object properties. This core constrains many, if not all, other at-
tributes in theories of vision. Whether discussed explicitly or not, each
mapping proceeds backward from proximal image (optic array) to distal
stimulus (environmental object or event). Now, this appears to be an
odd way for theories of perception to differ. In particular, mapping is
not at all about process; nor does it even deal with the perceiver.
Instead, it is concerned solely with an attitude toward a given object
or event and more broadly toward our visual environment, Thus these
mappings do not address issues of psychophysical relations between
stimulus and percept; nor do they easily submit to behavioristic versus
rationalistic analysis. Instead, they address only surety of information.
Consider each theory class in turn.

Direct Perception
In direct perception, theorists have generally assumed a one-to-one

mapping between information and the object properties associated with

it.! Some of the statements supporting this characterization were outlined
in chapters 5 and 9, so much of it need not be repeated here. But to
refresh this idea, consider the following (Gibson 1965, p. 68):

The specific hypothesis is that the invariant component in a trans-

formation carries information about an object and that the variant

component carries other information entirely, for ekample, about
the relation of the perceiver to the object.

Again, the use of “invariant” and “object” as singular nouns makes
it difficult not to read this statement except as a one-to-one mapping,
shown schematically in figure 15.1. Connectivity is clean, clear, and

information
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object
properties

Figure 15.1
One-to-one information-to-object mapping in direct perception.

unambiguous: It assumes that, for each meaningful aspect of the en-
vironment around us, there is one and only one invariant associated
with it. The elegance of such a system is patent: Perception begins as
the match of information to objects, which is unproblematic and un-
complicated by unruly networks of mapping relations.

One problem with this formulation is that perceptual scientists have
not found and specified many invariants. Thus, although objects and
object properties on the right-hand side of this mapping diagram (figure
15.1) are plainly and generally known, the invariants on the left-hand
side are not. Neisser (1977) claimed that this is the outstanding problem
for direct perception. Unfortunately, there is no recourse other than to
discover invariants one by one. It is a plodding, empirical endeavor,
and if all research efforts are gauged collectively, the invariants appear
to be somewhat recalcitrant to discovery, Gibson turned his later efforts
away from this type of empiricism toward explicating the notion of
gffordances. But to emphasize the mapping structure in much of Gibson's
thought, the same one-to-one relations hold in this new domain as
well. For each potential action we can take with an object, there is one
affordance, and for every affordance, one action. There is a mutuality
{Gibson 1979) between perception and action that can occur only if
mappings are bijectional (one to one). Unfortunately, the relation be-
tween invariants and affordances is not well explicated beyond the
notion that invariants are structural relations geared to the perceiver
and that affordances are functional ones corresponding to them.*

Indirect Perception

Indirect theorists, by contrast, have generally assumed a one-to-many
mapping from information to object properties. Cue theory, for example,
implies exactly this mapping, as shown in figure 15.2.> Notice that this
mapping leaves information nonspecific: No source on the left-hand
side of the figure is associated uniquely with any object property on
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. ) object
information properties

Figure 15.2

One-to-many information-to-object mapping in indirect perception. This mapping could
just as easily be called many to many.

the right-hand side. The mapping does not preserve structure across
domains. More simply, it is unruly.

Such a situation presents the perceptual system, and the perceptual
theorist, with a serious problem. Without information specification,
considerable conceptual or computational force must be brought to bear
on the problem of untangling information as it represents real and false

targets. How might the perceptual system work from nonspecific sources

of information to correct perceptual interpretations at a given place and
time? Rightward branching trees of information-to-object mappings
must be severely pruned, eliminating fruitless alternatives, lest all pos-
sible objects be considered as potential percepts, thereby leaving the
mind forever lost in thought, unable to plug itself into any reality. 1t
is often suggested that a certain amount of perceptual hypothesis testing
proceeds in such situations of ambiguity. The problem for perceptual
theory is that we do not know the number of simultaneous hypotheses
that might be tested at any given time.

Typically in indirect theory, however, only a small number of
information-to-object mappings are entertained for any given percept.
If every source of information were associated with, say, between two
and eight objects or classes of objects, then the perceptual system might
be able to deal with the large number of possibilities in every natural
scene, perhaps by some Brunswikian scheme of assessing cue validity.
But computation and storage requirements are still too vast to align
information with objects properly. Many researchers regard this situation
as tractable, but it seems so only if constraints on the number of branches
from each information source are severe enough. Without such a priori
knowledge it is not clear how the second question asked in chapter 1—
Why is it that perception is correct most of the time?—can be answered
satisfactorily. Constraining information to represent one and only one
object or event, as Gibson did, seems principled, but constraining it to

information
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Figure 15.3
Many-to-one information-to-object mapping propesed for directed perception.

between, say, two and eight seems ad hoc. Open the gates to more
than one object and it seems difficult not to let everything flood in.*

Directed Perception

The class of theory that 1 wish to promote is directed perception, which
makes a different assumption about the mapping between information
and environmental objects. As shown in figure 15.3, the mapping is
many to one. That is, any single source of information maps backward
onto one and only one class of object properties, but many different
sources of information can map onto each class. Thus, once a source
of information is selected for use, the rest of the perceptual act is as
clean and elegant as in direct perception. But information must be
selected by the perceiver, although it is not open to conscious delib-
eration. This view brings new meaning to Putnam’s statement at the
beginning of this section: We cannot ignore equivalent descriptions
of—or, in my terms, different information about—any object or event
in the real world. ‘

. Directed perception is a necessary perspective on information-to-
object mapping if we are to account for the results of research reported
in earlier chapters. In experiments 1 through 6 the cross ratio {or density
analog) appeared to be used by perceivers. In experiments 7 and 8§,
however, the perceptual system generally chose other information, an-
other invariant (the ordered relations among displacements), even
though cross ratios and density measures were still available, No single
invariant yet found can account for results in both settings, and given
the incommensurability of the results, such an invariant seems unlikely.
In experiments 9 through 11, taken in conjunction with data and theory
from elsewhere, a similar pattern emerges. Calvert, Gibson, and others
proposed the utility of the focus of expansion for wayfinding. Although
there has been little experimental evidence in its support, flying an
aircraft at low altitude, driving a race car, sailing an iceboat, running
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a bobsled, or downhill skiing lend credence to this idea. In such sit-
uations the geometric constraints on the location of a fixed point may
be much greater than during pedestrian locomotion. However, in the
latter situation and in experiments that mimic it, there is strong support
only for the utility of differential motion parallax. Both invariants may
be present, but one is useful under one set of circumstances and the
other under another. B

These two data sets are not alone. Cutting and Millard (1984), for
example, demonstrated that different sources of information were used
for the perception of flat versus curved surfaces. The perspective gradient
(or the invariant that underlies it) is based on an assumption about the
uniform absolute size of objects and accounted for most of the variance
in the perception of flat surfaces. On the other hand, the compression
gradient is based on the assumption that textures lie flat, and it accounts
for almost all variance in the perception of curved surfaces. But in our
experiment both perspective and compression, as well as a third gradient
(density), were present in all displays. Yet choices were made, pre-
sumably because some information is more efficacious for some de-
cisions than others.

In all three situations, the two reported here and that of Cutting and

Millard (1984), more than one source of information specified what
was to be perceived, and data support the idea that the perceptual
system selects among these sources. We might regard this, and properly
so, as a slim base on which to propose a general class of theories for
visual perception, but neither of the other two—direct and indirect
perception—appear to have any real means for beginning an account.
Moreover, it is my assumption, albeit a strong one, that, when looked
at closely, most rich perceptual situations are like those discussed here:
Invariants and variants abound, and choices must be made even when
an observer regards a single aspect of a single object.

Initial Comparison of Theory Classes
Consider the set of relations among the approaches to perception that
I have outlined. First, the only serious distinction between direct and

indirect perception, I claim, is the mapping between information and -

object. One way to construe the mappings is as a correlation: In direct
perception emphasis is placed on correlations that are 1.00; indeed
perhaps all are unity and all perception deductive. In indirect perception,
however, emphasis is placed on correlations that are less, and indeed
perhaps all are less, making all perception inductive. Second, I claim
that the difference between direct and directed perception is the normally
tacit but sometimes explicit assumption underlying direct perception—
that information is only as rich as the number of objects in the envi-
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ronment. Directed perception, on the other hand, allows for more than

.one perfect information-to-object cross-situational correlation. There

may be more than one deductive path. And finally, the main difference
between directed and indirect perception is the reversal of bifurcation.
Both require statements about process, but different pluralities of nodes
breed different accounts.

Consider the three classes of theory in light of process and outcome
for each by an attending perceiver. In direct perception, information
specifies process (the individual picks up what is there, one source of
information) and specifies outcome (the object or event is perceived as
it is). In indirect perception, information underspecifies process (the
perceiver does his or her damnedest to make do with what is there)
and underspecifies outcome (internal sources of information may be
brought to bear on what is seen). In directed perception, on the other
hand, information underspecifies process (there is enough different in-
formation such that the scientist cannot know a priori what algorithm
might be used) and overspecifies outcome (whatever source is used, the
percept would be the same). [ will return to other questions about how
directed perception is different from the others. Next, however, consider
more implications of these views of information-to-object mappings.

On Why Things Look As They Do

Koffka's question can be divided many ways. Part of the answer is
determined by our orientation toward contexts for information and part
by an orientation toward process. These in turn affect assessments of
causes for appearances.

Contexts for Information
Direct perception assumes that the richness of the optlc array just
matches the richness of the world. To guarantee sufficient richness,
however, this approach has always looked to the natural environment,
eschewing laboratory situations with their picturelike stimuli. In such
impoverished situations, according to this view, the perceptual systems
are apt to do as best as they can, performing all sorts of feats that may
look like, and may actually be, conceptual elaborations. But these are
said to be outside the province of normal perception and outside the
scope to which perceptual theories ought to aspire. From this perspective,
vision researchers start with the goal of understanding perception in
the context of information within which perceptual systems evolved,
only to consider special cases later.

Indirect perception generally assumes that the optic array is impov-
erished. And indeed, few experimentat situations can provide sufficient
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information for perception to pursue an unambiguous course. But in-
direct theorists, or so it often appears, tacitly extrapolate from the lab-
oratory setting to all others when describing perception as a taking-
into-account procedure. An assumption is made that the world is like
the laboratory, sufficiently impoverished to make perception a guessing
game. That perceptual systems can guess should be no surprise, but
that they guess all the time seems an unwarranted inference. Of course,
it would be odd for me to indict laboratory studies, and I certainly do
not. The issue is not about the ecological validity of experimentation
but about the representativeness of stimuli used in experiments, an
issue that both Brunswik and Gibson well appreciated. To feel com-
fortable in extrapolating from the laboratory to the world, stimuli should
look at least somewhat like objects in the real world and have as many
of their attributes as possible while still allowing control. The closer
the appearance, the more assured we can be when making generali-
zations about perception. I believe that motion is the key to producing
lifelike stimuli. Computer control over graphics displays has removed
forever the necessity of using static picture perception as the laboratory
model for real-world perception.

Directed perception assumes that the optic array is unknowably rich,’

far outstripping the number of objects in the real world.’ This over-
determination can even occur within laboratory settings. Thus directed
perception places at least two humbling demands on the perceptual
theorist: The theorist must be aware of the potential richness of in-
formation available in the everyday optic array, and he or she must
stand ready to recognize that human perceptual systems, like all complex
biological systems, are eclectic and do their best in different ways under
different circumstances. In perception this means that perceptual systems
may use different sources of information at different times, even when
performing the same apparent task and when all sources equally specify
the object or event perceived. '

Implications for Process

The mapping relations shown in figures 15.1 through 15.3 also have
implications for perceptual process. Direct perception makes the outline
of process relatively straightforward (Ullman 1980, Pylyshyn 1984,
Runeson 1977): The perceptual system consists of some special purpose
devices that extract information matched to the properties of the world.
Attend to an object or event, register its information, and perception
will follow; it cannot go astray. There are, in general, no particular
computational burdens on the system; it is designed to work in the
way that it does. Such statements are truisms, but we learn little from
them. Many of us would like to know how perceptual systems work
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in a nuts and bolts manner. To say that the perceptual system works

- effortlessly does not make a positive contribution.

Indirect perception, on the other hand, places rather rigorous re-
quirements on perceptual process. The weeding out of false targets
connected with the given information is a task of highest priority. Much
computational power must be directed at relatively early levels of visual
analysis to select among, for example, possible depth arrangements. It
is difficult to know how this power will play itself cut. It might manifest
itself in the number of processing stages, increased time at a given
stage, or simply as the number of neurons engaged simultaneously.
There is at the present time no appropriate measure of such power.
There are only the assumptions that the need is there and that they
must be met. What is clear to me, howevet, is that the use of the term
computation in explaining perception is a poor choice: The Latin root
computare means “‘with thinking,” and although I do not wish to isolate
perception from cognition, it seems clear to me that most perception
is not done with thinking; it is done on its own terms.

Directed perception, however, has the noncomputare ease of direct
perception coupled with the underdetermination of instantiated al-
gorithms of indirect perception. Perceptual systems are attuned to
sources of information and use different ones according to the task at
hand. Effort is not in computation but in the search for appropriate
information. The algorithms, or special purpose devices, stand ready
for use and run off automatically when triggered by the appropriate
information in the appropriate task.® Which process is used, however,
is not predetermined.

Causes for Appearances
How we get from information to subjective experience is almost a
complete mystery, regardless of the approach that is taken. But because
of the different attitudes of these approaches toward contexts and pro-
cess, it is not difficult to generate three different, albeit sketchy answers
to Koffka’s query. A theory of direct perception responds, in essence,
by stating that things look as they do because information in the optic
array specifies that appearance to our visual system, which has evolved
to pick up that information and see things in given ways (Gibson 1971b,
but also see Kolers 1978). Construing in this manner, direct theorists
take most seriously the idea that, once the individual has chosen to
attend to a particular aspect of the environment, perception is driven
from the bottom up, with evolutionary constraints guiding all outcomes.
Information and evolution shape appearances.

A theory of indirect perception, on the other hand, would suggest
that the appearance of things is due, in part, to downward cognitive
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processes, computations, and algorithms.” Without these, things would
not appear at all. Evolution plays a role only in providing a backdrop
for more-general-purpose computation. Cognition and computation
have the heavy hand in shaping appearances.

Directed perception negates neither of these ideas:* Perception is
driven from bottom up but constrained from the top down according
to the task at hand. Downward constraints are necessary, insofar as
any of the data that I have presented force this conclusion, because
we now know that the perceptual system selects among multiple sources
of information that specify the same thing. This is a new reason for
interest in process and algorithms, because the perceiver often has
several information sources to bring to bear on a given solution.

Implications for Research and Theory

If directed perception is a reasonable approach, what kinds of questions
for research does it foster? 1t seems to me that three emerge. 1t is
instructive to consider how these questions and their answers differ
from those ordinarily found in direct and indirect perception. Overlaps
and disjunctions prove interesting. '

1. What information is available? ~The researcher must look throughout
arrays presented to each sense modality for possible sources of infor-
mation. Relational information, in particular, should be sought as ap-
propriate for a given perceptual task. Invariants may be important,
variants may also be. It is too early to make even a preliminary tally.
Concentration on information, of course, has been a hallmark of direct
perception; indirect theorists ought to take notice. The obvious problem,
however, is that there are no a priori guidelines available for framing
the forms that information might take. Projective geometry has face
validity for vision, but no corresponding bodies of formalism seem to
have the same relation to other modalities, Moreover, it may be too
hopeful even to expect that projective geometry will prove more useful
to the vision researcher. The problems of the perceptual system and
the problems of the mathematician, as suggested in chapter 5, are
different enough so that we might easily expect no overlap at all.
Ultimately, only the ingenuity of the researcher can be of aid: Infor-
mation is where the researcher can find it. And it is hard work, inter-
mittently rewarding.

2. What information is used? This is the easiest question to answer.
Given that we have discovered potentially useful sources of information,
they can be tested through normal experimental, typically psycho-
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physical, procedures. Because both direct and indirect approe%ches regard
experimentation as important, there is nothing new to dire_cted per-
ception here. Nonetheless, two hints are worth mentioning. 1.31rst, para-
digms should be varied enough so that when an information source
is found, the boundary conditions on its use can also be eXpIOI‘ed,.Wlﬂ"l
the hope of stumbling across other possible sources. Second, stimuli
and contexts presented to observers should be rich enough to allow
use of alternative information. o

3. Why is information intermittently useful? This is the most d1ff1.cu_1t
question of the set. It is unasked by direct perception because it is
defined outside the realm of possibility, but it is asked in a slightly
different way all the time in indirect theory: What is the value of a
particular “‘cue’?

It seems to me that there are two possible approaches here, one
information driven and the other, task driven. The first is to look at
the nature of specification, which might be called the guality of the
information. In the example of cross ratios versus displacement patterns,
a violation of the invariance of cross ratio simply indicated that the
surface was not planar, whereas violation of uniform displacemfznt
indicated the locus of the noncoplanar element. Thus an unvarying
Cross ratio is a global specifier; displacement nonuniformity Is both a
global and a local specifier. In the case of wayfinding by optic ﬂow,
differential motion parallax may be high-quality information at relatively
low forward velocities, but the focus of expansion is a high-quality
source at higher velocities.

A second possibility is that the task guides the search. In the case
of experiments 7 and 8, cross ratios may not generally have b(.een con-
sidered at any putative stage of the perceptual process. Movmg over
terrains may be sufficiently important to demand and activate special
procedures for picking up information. 1t is not clear to me, however,
how task differences would affect choices between the focus of ex-
pansion and differential motion parallax. Ultimately, however, 'it seems
likely that these two approaches are not really different; it is just .that
the first clearly throws its lot in the direction of the stimulus (aI'.ld dilrect
perception) and the second toward the observer (and indirect
perception).

Some Final Thoughts

Directed perception does not emerge here full blown. Roots are never
hard to find. Some expressions of the mapping ideas that 1 have pre-
sented can be found in Helmholtz (1866, 1894), Heider (1958), and



252 Classes of Perceptual Theories

Hochberg (1979, 1981), and more explicitly in Johansson (1970, 1977)
and Marr (1982). More than anyone else, however, it was Gibson who

forced the hand. By relentlessly sticking by the notion of invariants,

Gibson and others discovered some. It now appears that there are even
more than he thought. I contend that this is embarrassing for direct
perception.

Embarrassing for me is that nowhere in my discussion of directed
perception, or in my discussion of direct or indirect perception for that
matter, is the concept of meaning. This omission was intended; I frankly
have not the vaguest idea how to deal with it. Tacit, or sometimes
explicit, in some presentations of indirect perception is that meaning
is contributed by the perceiver; in direct perception, on the other hand,
meaning occasionally appears to be in the stimulus. Both these ideas
must be wrong. Gibson was more careful than this caricature of direct
perception and gave us affordances as a hopelessly tangled but important
attempt to account for meaning in the mutuality of the perceiver and
environment. Something similar to the idea of affordances is likely to
be right, but its current formulation so sticks in my craw that anything
I might add here would contribute nothing.

Finally, with regard to information for perception, specification versus -

underspecification is no longer the only issue to consider; specification
versus overspecification must join the debate. Of course, Gibson allowed
perceivers to search out invariants, but he was never clear about what
would happen if perceivers found more than one: Would they satisfice
or would they optimize? This question demands an answer informed
by process and context. It seems that the following generalization is
almost certainly true: The more impoverished the perceptual situation,
the more demands are made on the cognitive system to make senseé
of what is presented. And if so, indirect perception occurs. On the other
hand, the richer the perceptual situation, the more the individual can
choose among specifying sources of information. If only one invariant
is present and if perception follows suit, direct perception occurs; if
several invariants are present and perception follows only one, or even
some combination of those present, then directed perception occurs.
In other words, underdetermination and overdetermination are part of
a continuous theoretical fabric according to the contexts in which per-
ception is found. Because our normal surrounds are rich, our normal
perception must be directed.

Notes

Chapter 1 Information

1. The temporary fall of perception from a central place in philosophy occurred in the
middle of this century. It was due to drab discussions by sense data theorists, ill-
providing assurarce for the existence of physical objects in the real world. Even
philosophers who purported to be discussing perception at that time (Austin 1962,
Chisholm 1957) were really discussing words, in the tradition of analytic and linguistic
philosophy. There were, of course, exceptions, Ayer (1940, 1956, 1973} being the
most obvious {and the most drab). Since 1960, however, perception has regained
respect, and this is a development which should please psychologists. Armstrong
(1961), Hamiyn (1961, 1983), Pitcher (1971), Dretske (1969, 1981), and Fodor (1983)
are but a few of the philosaphers who have taken the problems of perception seriously
again, and there are even those, for example, Heil (1983), who start with the conceptions
of Gibson.

2. Interestingly, the connection of the term metaphysics to philosophy is accidental.

" Aristotle called his philosophical works ““ta meta ta physika biblia” {the books after
the books on nature”}). They were called Metaphysics because they followed his
Dhysics, bound together in the same volume.

Recently, there was an interesting interchange on this matter. Wilcox and Edwards
(1982) suggested that physics has played an all too intrusive role in perceptual psy-
chology and that psychologists have too readily adopted the ontology (the physical
measures) of physics. Three replies ensued. Haber (1983b, p. 158) stated that

Fechner did not tell us what physical units to use; nowhere did he say light
must be measured as quanta, quanta per unit time, quanta per unit area, patterns
of discontinuities of quanta over time and space, Fourier transforms of the above,
texture pradients, or any of many other possible units. His demand was that it
be in some physical unit, independent of the resultant appearance to any potential
or real perceiver. When we move away from adherence to this strict demand,
lawfulness eludes us.

[ wholeheartedly agree. Hudson (1983), in a second reply, suggested that the physical
terms adopted for perception must be satisfactorily constrained; otherwise perceptual
theory becomes tautological. He suggested that classical optics provides such con-
straints. I agree and explore these ideas in chapters 2 through 4 {see also Cutting
1982b). On the other hand, de Wit and de Swart (1983, p. 173) suggested that ““as
psychologists we do not need to look for some solid basis of physical description.”
The question here, it seemns to me, is: What constitutes a physical description? Photons
are not needed, but relations ameng objects most certainly are. Which relations are
appropriate out of the universe available is an empirical question.

“
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4. Although epistemology has traditionally been a part of metaphysics, the philosophy
of this century has denied it a place within that area. The reason is that epistemology,
but not metaphysies, is thought to be susceptible to philosophical analysis. For purposes
of my discussion, however, placing epistemology under metaphysics causes no harm.
In fact, in modern philosophy, epistemology and metaphysics may eventualty show
rapprochement.

- See Garner (1966) and Gibson (1979). A handy way to discuss this idea is to use the

phrase “epistemic perception” (Heil 1983, Shaw and Bransford 1977),

This solipsism is a prospect that is not abhorred by all those interested in cognitive

science (Fodor 1980).

- See, for example, Moore and Stout (1913-1914) and Schilpp (1942).

- Following Gibson (1954a) I use the term movement to signify changes in observer
position relative to environmental coordinates and motion to indicate changes in
object position relative to an observer. Thus I speak of the observer's movement but
of object, retinal, and optic motion, This distinction, however, can be confusing and
difficult to maintain. For example, it makes little sense to speak of locomovement, and
the verb underlying motion and movement is the same, move.

9. A common argument is heard in this connection: If there is an indefinite number of
environments that could lie behind any given two-dimensional projection, then there
is an indefinite number that could lie behind each frame in a sequence of projections,
Thus going from a static to a dynamic situation would appear to gain nothing in
surety. The problem with this idea, T believe, is that 2 dynamic projection of a rich
environment is typically consistent for one and only one rigid arrangement of objects.
To be sure, there are an indefinite number of plastic environments that the projection
sequence could represent, but the philosopher must then argue why each of those
should have a status equal to a rigid one. It is true that not all things around us are
rigid, nor do they always remain in rigid relation to one another, but for those cases
in which rigidity holds, elegant algorithms are available to determine the three-
dimensional structure of a scene.

10. See, for example, Attneave (1954, 1955), Broadbent (1958), and Garner (1962, 1970,

1974). ’

Hochberg and McAlister (1953) conjoined the ideas of amount of information and
simplicity in an analysis of figural goodness and started a long tradition of the mea-
surement of information in stimuli, See Hatfield and Epstein (1985) for a review, In
this tradition, Leeuwenberg and colleagues have promoted what is now called structural
information theory (see, for example, Leeuwenberg 1971, Buffart et al, 1983, and
Restle 1979). Although I respect many of the ideas in this approach (see Cutting
1981a), in my view it is a forced march through the analog spatial world around us
on the legs of a propositional network. It seems hampered by ad hoc assumptions
about the primitives used in the information scheme and confined to less interesting
paths of two-dimensional, simplistically shaded drawings.

Finaily, Dretske (1981, p. 142) tried to recast information theory in terms he thought
appropriate for perception, but he redefined perception in an old way, similar to that
of Locke:

Perception is a process by means of which information is delivered within a
richer matrix of information {hence in analog form) to the cognitive centers for
their selective use.

[ ]

o

Q3 ]

On this view, perception stands between sensation and cognition and has nothing
to do with the external world. Perception is thus a process between two states, an
arrow between two boxes. I like this idea no more than did Gibsen (1979).

11.

12.

13.

14.

15,

16.

i7.

1

o

19,

20.
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Chomsky (1965), for example, considered pragmatics a side issue to a formal analysis
of language.

See, for example, Rosch and Lloyd (1978), Smith and Medin (1981), and Zadeh (1969,
1983).

Roth)and Shoben (1983) demonstrated that the structure of conceptual categories
depends on context, and Barsalou (1983) showed that ad hoc categories that have
the same structure as natural ones can be constructed on the spot.

The issue of sets is raised again in chapter 5 under the idea of groups. There, like
here, T take a negative view of them for perception. My qualms notwithstanding,
there have been some interesting applications of sets to perception (see Alexander
and Carey 1968, Garner 1974, and Palmer 1983), in which information in sets {or
groups of rotations and translations) is combined with geometrized information, Groups
have been long discussed in relation to perceptual constancies (Cassirer 1944, 1945;
Poincaré 1907, Russell 1927).

From my view it seems that many relations may be best expressed in a propositional
(more languagelike) format and others best expressed in an analog (more spatial)
format. Because visual perception is largely concerned with the layout of objects in
space, [ find it easier to speak of relations in spatial terms. See Anderson (1983) for
a propositional view of the mind and Shepard and Cooper (1982) for analog constraints.
In a precomputational tradition, Paivio (1970) promoted a hybrid view. Jackendoff
(1983) tried to come to grips with meshing propositional information from language
with analog information from vision.

Despite the ink spilt over this debate, I see little problem with a hybrid view:
discussing language in propositional terms, the optic array in spatial terms, and the
area of intersection in either set, whichever is more convenient. Differences over
which format human minds might use can be litigated at some point when domains,
theories, and data are sufficiently sharp to warrant it.

To be sure, light rays can be bent by gravity; by passing them through different
media, such as air, water, and glass; by passing them through different temperatures
in the same medium, yielding mirages; and by diffraction, or curving around edges.
But these are special cases, The rectilinearity of rays is sufficiently true for human-
scale observations so that treating them as straight loses nothing essential.

The assumnption here is, following Roger Bacon, that structures of the real world can
be known through principles of geometry, particularly those of Euclid. This is an
assumption worth investigating, and I pursue it in chapter 4. I assume that the
foundations problem in perception is no worse than in Euclidean geometry. Some,
of course, regard foundation efforts in geometry {and mathematics, generally) as
demonstrating the sand-castle nature of the mathematical constructs (for an overview,
see Davis and Hersh 1981), but for a psychologist they seem pretty firm.

. Berkeley (1709) was first to suggest that distance was not visually perceptible, and

his view became so firmly held that Mill (1842, p. 249) could state:

The doctrine concerning the original and derivative functions of the sense of
sight, which, from the name of its author, is known as "Berkeley’s Theory of
Vision,” has remained, almost from its first promulgation, one of the least disputed
doctrines in the most disputed and most disputable of all sciences, the Science
of Mar.
Invariance cannot dissolve the skeptical problem of perception of the physical world,
but it can provide an answer to the content problem,
Restricted motions are those for which additional assumptions are made. For biological
motions, like those of human gait (Johansson 1973b; Cutting et al. 1978; Cutting
1978, 1981a), Hoffman and Flinchbaugh (1982) included a planarity assumption
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about the motion of limbs that sufficiently restricts the universe of solutions so that
the structure of a person can be recovered. See Ballard and Brown (1982) for an
overview of computation approaches to the visual perception of motion,

21. Lappin et al. (1980} have shown that many points on a transparent sphere can yield

a coherent percept in two views, and Lappin and Fuqua (1983) have shown that a
continuous presentation of three moving points on a line can easily be discerned as
being rigid.

22, Hom and Schunk (1981), Prazdny (1981), and Rieger and Lawton (1983), among
others, have used this type of analysis in the study of optic flow for a moving viewer,

23. Ballard and Kimball (1983), Clocksin (1980), Hildreth (1984), Longuet-Higgins and
Prazdny (1980), Koenderink and van Doorn (1976a, 1981), among many others, have
used this approach.

Chapter 2 Projections, Optics, and the Optic Array

1. See, for example, Boynton (1974), Braunstein (1976}, Gibson (1966), and Johansson
(1975).

2. Agatharchus is credited with the initial discovery and use of perspective twenty-five
centuries ago. He wrote what is almost surely the first book on natural depiction,
which influenced both Democritus and Anaxagorus, who also wrote on perspective
and in turn influenced Euclid.

3.1t may seem odd that discussion of the camera obscura, which dates from Alhazen
(Polyak 1957), preceded discussions of eyes as cameras, but there was resistance to
inversicon of retinal image. Because it was known that the image in the camera obscura
was inverted, the analogy could not be put forth until this reticence was overcome.

4. Keplet's title, Ad Vitellionem Paralipomena, translates humbly as “A Supplement to
Witelo,” but the work was a counter to Alhazen. Witelo’s optics was bound to Alhazen's
Perspectiva, and together they formed the most important compendium at that time.
Kepler's optics demonstrated that the lens of the eye is not the sense organ itself but

~merely a conduit that sends the pyramid of light to the retina in inverted form.
Molyneux (1690, p. 105) was first to give the correct answer to the retinal-inversion
paradox:

The eye or visive faculty takes no notice of the internal posture of its own parts,
but uses them as an instrument only, contrived by nature for the exercise of
such a faculty.

5. Pinhole projection has many interesting properties. One is that there is infinite depth
of focus. Because of diffraction, the focus is nowhere sharp, but objects nearby are
registered as clearly as those far away, a situation quite unlike a normal camera or
human eye. The pinhole’s image is normally dim. Thus sensitive film or long expostre
times are needed to record the projection. And of course there is no analog to exposure
time for a biological eye, other than perhaps the much discussed icon (Haber 1983a,
Loftus 1985). In a camera, long exposure times mean insensitivity to motion; moving
objects leave blurred trails across the film during the duration of the exposure.

The biological and photographic solution to dimness is dioptric pupils—large ap-
ertures with refracting lenses. These lenses bend light so that more rays emitted or
reflected from an object pass through the pupil and converge to the same point on
the projection surface. Because the range of pupil size for the human eye is about
2-8 mm, the human eye allows much more light to strike the retina. Calculation
would suggest that the eye should be about 400 times as sensitive as a pinhole
camera, In fact, however, light passing through different parts of the pupil is not
equally effective in producing a sensory response, This phenomenon, known as the

10.

11,

12,

13.

14.
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Stiles-Crawford effect (Bartley 1951), is due to the alignment and shape of the cones
(but not the rods) on the retina. In general, light entering at the edge of a dilated
pupil is only one-fifth as effective as light entering at the center; light entering halfway
out from the center is about two-thirds as effective. Such an effect for photopic (day)
vision would limit refractive error while at the same time boosting the luminance of
the input over what could be had with a pinhole instead. In general, during maximum
dilation of the pupil, the human retina receives about 100 times as much light as a
pinhole camera.

The cost of a dioptric system is limited focal depth: Neither a perceiver nor a
photographic camera can focus both near and far at the same time. Many biological
eyes overcome this problem through accommodation {control over the shape of the
lens), focusing at different depths at different times. But despite the complication of
dioptrics over pinhole cameras, we can consider the optics of projection to be essentially
the same. This similarity is known as the Gaussian approximation (Pirenne 1970).
Naimark {1981) composed striking examples of the third type. He photographed a
still-life scene of household objects, spray painted everything white, and then projected
a photographic slide of the original scene onto the white environment, recreating
the colored scene. The impression can be so realistic that registration of projecting
contours and real object contours must be broken in order for anything unusual to
be seen. The white objects could be called a reality-shaped projection surface.

See Leeman et al. {1976) and Battisti et al. {1981) for discussions of anamorphic art.

. Ptolemy’s work, entering Florence about 1400, was at least as influential in the

development of perspective drawing and painting as the medieval texts on optics
(Edgerton 1975). Of course, maps date from well before Ptolemy, at least to Babylon,
but these make no pretense of being true projections.

. In cartography, “polar projection” is a term used in reference to regions of the globe.

Thus a polar map is one that shows the North or'South Pole, When I use the term,
however, I refer to the method of projection, not the subject matter projected.

For mapmakers, the major difference between Mercator and Lambert projections is
that the former is orthomorphic (or conformal) and the latter is authalic. An orthomorphic
projection preserves relative north-south and east-west distances at any point, an
authalic the area of any projected region. Both are distinguished from aphylactic
projections, which preserve neither (Steers 1927).

Other mapping principles have been employed to reduce distortions (Steers 1927,
Fisher and Miller 1944). One has been to use polyhedra, particularly the icosahedron,
with its twenty equilateral triangles as faces, devised by Fuller (1963). In maps this
icosahedral projection reduces local distortions between points on the globe and
poinis within all triangles. It is polar, using the center of the earth as the pole. But
this kind of map suffers significant topological breakage: It unfolds horribly into a
latticework of triangles connected on one side, and it creates problems in distance
estimation along geodesics between points on nonadjacent faces of the map.

In science, for example, parallel projection has often been used by the artificial in-
telligence community (Marr 1982; Ullman 1979, 1983) because of its relative simplicity
for computational approaches to object recognition.

In fact, light fans out from points on an object and enters the pupil, in some sense
reversing the pyramid. Boynton (1974) chastised Gibson for missing this fact, but
more facts were on Gibson’s side. The Gaussian approximation, discussed in note 5
to this chapter, states that nothing essential is lost by assuming that the eye is like
a pinhole camera and that the pyramid of sight is like that suggested by Euclid,
Ptolemy, and Gibson.

Five variables determine a polar projection (Carlbom and Paciorek 1978): (1) orientation
of the projection plane with respect to the principal face of the object, which separates
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one- from two- and three-point perspectives; (2) height of the center of projection
w:th respect to the object (or the height of the horizon); (3) distance of the center of
pro!ection from the object, often measured in stimulus diameters; (4) distance of the
Projection plane from the object, which affects only the size of the projection; and
(5) ortentation of the centric ray with respect to the image plane, relevant to anamo;'phic
art, Carlbom and Paciorek suggested that a good naturalistic three-point perspective
should have the walls of a rectilinear object appear at angles to the projection plane
have the horizon such that it intersects the object at the eye height of the observer’
and have the viewpoint be from at least two stimulus diameters so that the. ob]'eci;
d?es not occupy more than about 45° of visual angle. )

15. Binocularity is ignored, in part, because the consequences to vision in stepping from
no cyes to one are vastly greater than from one to two, A one-eyed individual can
drive a car legally and can fly an airplane as well as a person with two eyes (Grosslight
et al. 1978); a no-eyed individual should attempt neither, Nevertheless, perhaps the
most charming counter to my claim that cyclopean considerations are sufficient for
vision was given by Molyneux (1690, pp. 294-295) at the very end of Dioptrica Nova:

And as a conclusion to the whole [ shall only add one Experiment that demonstrates
we see with both €yes at once; and ‘tis, that which is commonly known and
practiced in all tennis-courts, that the best player in the world hoodwinking one
eye shall be beaten by the greatest bungler that ever handled a racket; unless
helbe used to the trick, and then by custom he gets an habit of using one eye
only.

But I am not even sure that this would be true.

16. Evidence by Williams and Collier (1983) and Yellott (1983) suggests that image -

degradation serves the purpose of keeping acuity below the Nyquist limit of sampling
frc-aqt..lency. In essence, if we could see any better, our visual images would suffe
aliasing problems just like those seen on raster-scan displays. Qur visual world, then,
would suffer the “jaggies,” just like the images of curved objects on poor ciualit}:
video games.

17. Because the center of rotation of the eye and the nodal point of the projection are
not the same, the-optic array changes somewhat with ocular rotation (see Gulick and
Lawson 1976). The amount it changes, however, is not likely to be psychologically
relevant,

18. ngd (1984) suggested that there is an inherent Incompatibility of this assumption
with the first. Because information in the optic array is not punctate—rays are infinitely
denr?e, and information is spread over them—it is difficult to locate particular points
as discrete from their neighbors. Todd's solution was to consider visual solid angles
rather than points. But regress shows that solid angles project from perimeters, which
are lines, which in turn are made up of points, Regardless, what follows throilghout
these chapters is an analysis of points. From points I derive angles, lines, and surfaces
and although it is certain that the perceptual system does not perform this samF:
operation, an analysis of points provides a more than usefu] beginning, Just as
astronomy and physics were advanced through the useful fiction of point masses,
the study of visual perception can be advanced through consideration of point eIementE;
in the optic array,

19. For‘ example, if an observer marks a point on the horizon, then moves the eye
horizontally 90°, marks that point, and moves vertically 90°, the observer is still
only 30° from the starting point. If such measures were taken on a plane, we would
expect Pythagoras to rule, and the distance covered by these orthogona’I moves to
b_e about 127°. But this is incorrect. A triangle on a sphere can be drawn with three
right angles, or three of any size so Iong as their sum is at least 180° and less than
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540°. One with three right angles takes up one-eighth the surface of a sphere. Such
a section cannot be measured in degrees squared because squaring is not the proper
algorithmic process.

20. The word subtend means “stretch beneath”; so to subtend an angle is to stretch an
arc or a line from one side of an angle to the other. For example, the hypotenuse of
a triangle subtends its right angle.

21. Direction of rays also concerned Buclid, Like many before him, he proposed an
extromissionistic theory (in which the eye emits rays of light that bathe objects) rather
than an intromissionistic one (in which the eye receives reflected light). Aristotle
opposed the former view, but Alhazen was the first to present convincing evidence
against it (Lindberg 1967): The eye could be injured when it looked at something
very bright, such as the sun, and it was difficult to imagine how or why an organ
would thus injure itself. See Grant (1974) for later, medieval arguments by Robert
Grosseteste, Roger Bacon, John Pecham, and Witelo.

22. Five centuries later, Ptolemy realized the limitations of delimiting areas by conic
sections and first spoke of the “pyramid of sight,” with the eye at the apex and with
the base a perimeter of any possible shape. Euclid did not state exactly where within
the eye the true apex appeared. Following his lead, Galen, in the second century,
assumed that, because the lens was at the apex, it was the receptor surface of the
eye. This idea persisted in many forms until Kepler. Heliocloris of Larissa realized
the problem of considering the eye as a point and appears to have been the first to
propose that the pupil is wide enough for the apex to lie within the eye (Ronchi
1970). For the Gaussian approximation, we now know that the apex lies at the front
of the lens in the cornea-lens dioptric system (Pirenne 1970).

At the other end of the pyramid, of course, was the object. In Euclid’s analysis
the rays from the eye simply fanned out, but Ptolemy added the notion that {when
an object’s flank is orthogonal to the line of sight} the line of sight to the object’s
center, the centric ray, is the shortest. He believed that this ray carried the truest
information about the object. In a similar vein, Alberti later called this the “prince
of rays” (Edgerton 1975), and this ray eventually became that from the eye to the
vanishing point in a one-point perspective drawing.

23. Different translations of Optics include more definitions at the end of the list, some
of which are never used in the body of the work. One is that all light rays travel at
the same speed, a view that reinforces Ptolemy’s idea that the centric ray has pre-
eminence and that it provides “clearer” information about the object. A second is
that all objects subtend only certain angles, suggesting that small angles do not reveal
visible objects (Ronchi 1970).

24. Ronchi (1970) thought Euclid may have been talking not only about distant objects
but also about near ones. If this is true, Euclid was the first to discuss the near point
of accommodatton, the point closest to the lens on which the eye can focus.

25. See, in particular, Ronchi (1957, 1970, 1974}. Ronchi had clear influence on Gibson,
although Gibson chastised him for his dualistic view of perception and for his belief
that the mind perceives off the retina, To Ronchi (1957, p. 288), nerve impulses in
the visual system are

turned over in the mind which studies their characteristics and compares them
with the mass of informaticn in its files. In conclusion it creates a luminous and
colored figure which it places where it believes the initial group of atoms to be.

26, The shift from psychology to physiology was subtle but almost inevitable with
Alhazen’s proof that the eye receives rather than emits light. All students of optics
turned toward reception and eventually to receptors. Psychological issues, such as
constancy, were generally lost. To be sure, the subdiscipline of physiological optics
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often contained treatments of perception, and Helmholtz's (1866) treatise is the out-
standingly comprehensive example.

Chapter 3 Pictures

1. Picasso could not have espoused a belief about perspective as extreme as this appears.
Flanner (1956, p. B4), in an essay on Georges Braque and cubism, discussed an
interaction between Stein and Picasso that promotes a different impression:

Miss Stein, with her hearty curiousity for explanations, asked Picasso fo put
Cubism into words, to which he replied, “You paint not what you see but what
you know is there,”

Others who have espoused a conventionalist approach to perspective are Steinberg
(1953) and Arnheim (1954).

-For a detailed discussion of contracts and contractualism as a psychological and
philosophical approach, see Proffitt (1976) and Proffitt and Halwes (1982).

3. See, for example, Gibson (1954b, 1971b), Gombrich (1960, 1982), and Hochberg
(1978a). .

- See Gibson (1954b) and Hochberg (1962) for discussions of fidelity. The closest
nonphotographic approximations to the optic array are works of trampe Foeil, paintings
that “fool the eye.” Perhaps the grandest trompe 1'ceil is the Pozzo ceiling, painted
in the late seventeenth century in the church of St. Ignazio in Rome and particularly
studied by Pirenne (1970, 1975). Painted on this ceiling are images of columns adomed

b

M

with angels that, when viewed from the center of the floor beneath it, look like a -

continuation of the real columns and space below. Because the artwork is on a high
ceiling, binocular disparities are diminished, enhancing the effect. Trompe l'ceil has
been relatively rare in art since the development of photography, ’

Back to surrogates, Gibson later dropped the term from his discussions of picture
perception (Gibson 1960b) because it had no further role in his evolving theory. He
first adhered to a fairly strict perspectivist view (Gibson 1954b), suggesting that
pictures are essentially copies of the optic array at a particular place and time; he
next rejected that idea (Gibson 1966), suggesting that pictures are stationary structures
of gradients, discontinuities, and textures; and ultimately, he (Gibson 1979) proposed
that a picture is an arrangement of persisting invariants of structure, This is a curious
idea that [ return to in chapter 5.

5. See Hagen (1979, 1980) and Kennedy (1974} for reviews of the various positions.

6. The other important school of picture perception is the gestalt approach, best Tep-
resented by Arnheim (1954, 1969), who said little about surrogates per se. Instead,
he demonstrated that gestalt principles—such as those of figure and ground, good
continuation, and pragnanz--have felicitous application in the domain of art. In fact,
because most of the principles were first developed and demenstrated with line
drawings, it is no surprise that gestalt properties might have great explanatory value
in picture perception.

7. Strictly, the surfaces of picture and mirror need not be parallel in Brunelleschi’s
experiment. When not parallel, the image in the mirror undergoes perspective trans-
formation, a tapering in cne direction that preserves betweenness, but for either a
“narrower” or a “flattened” environment. See also Amheim (1977).

8. For a photograph, the location of the proper station point is along the perpendicular
from the center of the picture. The distance along that line is the focal length of the
lens times the enlargement of the picture.

9. This is done by drawing projectors from the eye to each point in the picture and
beyond it into virtual space. The projector is truncated when the ratio of its distance

10.

11.

12,

13.

14,

15.
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beyond the image plane divided by the total distance to the station point attains the
same ratio as that from the correct station point in the scene when the picture was
originally taken, scaled up or down by any enlargement or diminution of the picture.
See, for example, Anstis et al. (1969), Pirenne (1970), and Wallach (1976a). Goldstein
(1979) also discusses the phenomenon in an altered experimental context.

This idea was suggested to Pirenne in a letter from Finstein in 1955 just before
Einstein’s death. Pirenne also felt that La Gournerie’s paradox was related to math-
ematical homology. Here, I think, he was on the right track. Images of a photograph
seen from right and wrong station points have identical topologies.

See Shepard and Cooper (1982) and Cooper and Shepard (1984) for summaries of
mental rotation phenomena. In this vein, Kubovy (1986) assumed that some form
of mental rectification brings the image in register with the eye so that the picture
is “seen” from a view orthogonal to the image plane. That is, it is as if the observer
undergoes a mental out-of-body experience and is placed directly in front of the
picture. Greene (1983) is less clear but presents a systern not unlike Kubovy's for
reconstructing the preferred viewpoint. Moreover, like Pirenne, Greene (1983,
P- 102) seemed to think that his rectification is a cognitive process:

The extent to which different people can ignore whatever extra mental effort is
required to reject these improbable {though optically consistent) subjects is shown
by their degrees of tolerance of seats to either side of center at the cinema. This
extra effort would also explain why the ‘illusion of depth’ is . .. stronger the
closer we are to the preferred viewpoint.

One problem for such accounts is anamorphic art, where the appropriate point of
view is not at right angles to the image plane, but at very sharp angles, often 15° or
less. Anamorphic art demonstrates that the mental rectification of the proximal image
in La Gournerie’s paradox is not compulsory.

Whatever the process, there is little question that the slant of the picture, derived
from cropping or from graded binocular disparities, can be important to perception.
Pirenne (1970) and Gregory (1970) amply demonstrated that pictures taken of other
pictures at a slant can reveal large distortions in the original, It remains possible,
however, that the accounts of Pirenne, Greene, and Kubovy apply to static images
but that a different kind of analysis applies to moving images, particularly cinema.
The rationale for this is that in cinema invariants under transformation can be studied,
whereas in static images (at least in my view) there are no transformations to reveal
the invariants. .

See, for example, Kubovy (1986). With him, I concur that Hagen and Elliott’s stimulus
selection was odd. More important, however, is that the preferences demonstrated
do not indicate the limits of the visual system in resolving distortions. Several other
studies have investigated the relation between perception of space and effects of
foreshortening caused by loocking through a telephoto lens, a situation that creates
similar affine distortions. Purdy {1960), Farber and Rosinski (1978), Rosinski and
Farber (1980), and Lumsden (1980) have shown that observers can be reasonably
accurate in determining the slant of a depicted surface,

Hagen and Jones (1978) demonstrated further that, when the same situation is used
to judge the shape of objects, adults can match the pictured objects with the three-
dimensional shapes quite well but children cannot. '

The cue concept began with what Berkeley {1733) called signs to the perception of
objects in depth. Signs are surrogates that stand in the place of what they signify.
Mill (1843) followed Berkeley’s use, James {1890, p. 518) may have been the first to
use cue. He discussed it as an impetus to action:



2

16.
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It will be remembered that we distinguish two orders of kinaesthetic impression,
the remote clmes, made by the movement on the eye or ear or distant skin, etc '
and the resident ones, made on the moving parts themselves, muscles, jé)int;
etc. Now do resident images, exclusively, form what I have called thelmentai
cu;,h or will remote ones equally suffice?

ere can be no doubt whatev ] i
e resident on of thr et km;r that the mental cue may be either an image of

Thus ext.ernal and internal information can cue action, It is a small step to consider
these cuing perceptions as well, as Titchener (1909, p. 314) used the concept:

In monocular vision the sensations of accommeodation, and in binocular vision

the sensations of convergence, gi i
t , give fairly accurate cues to the positi j
in external space. ¢ posttion of object

Harper and Boring (1948) discussed the history of the word cue within psycholo
but seemed to have missed james. They also did not find the analog of the theanig}ly
word for cue, Stichwort, in German psychological texts. They traced the use of the
Gen"nlan for sign, Zeichen, to Lotze, But again, overlooking some English-langua
tradmc‘m, they missed Mill’s and Berkeley’s use of it. Harper and Boring also af fg
for sw1fching to the term clue. But in either case, cues and clues are prom tgufor
Pperception, not sources of information that specify an object. i
Enumeration of cuelike sources of information about depth began with Porterfield
(1759) and Reid (1764). Reid, following Berkeley (1733), called these “signs by which
we lea'rn to perceive distance.” In modern garb, those listed by. Reid were accom-
modation, convergence, aerial perspective, and {amiliar size.
For an observer 1.83 m tall, his or her eyes will be about 1.68 m above the ground
and the horizon {assuming that the earth is a perfectly smooth sphere) is atg about
%.72 km (see also Warren 1976). But since the arctangent of 1.68,/4720 is 89.98°, the
line from the eye to the horizon is virtually parallel to the ground. o

Chapter 4 Space

1.

»nN

[

Wiggir}s (1968) noted that different kinds of things can be in the same place at the
same time. Thus one’s brain and one’s mind, universities and certain buildings, and

;) e- ¥ cited phosphor alld plOSE on text editor O Cupy the same Place
G thod ray excite a
C h a r

. Some deny the existence of perceptual error (Shaw and Bransford 1977, Michaels

artdlCarello .1?81), regar.ding the term as a category mistake, whereas others regard
this idea as difficult tg maintain (Cutting 1982b), in part because discussion of perceptual
error dates back continuously at least to Malebranche (1674} and js attuned to commen
usage.

- The clearest presentations of this idea are in Shepard (1981, 1984) and Shepard and

Cooper (1982).

- Some claim that natural geometry is an explanatory device at variance with Descartes’s

ra_tionalisfic approach to perception (Pastore 19713, whereas others regard it as central
to Cartesian thought (Maull 1980). Regardless, the concept speciated and proved
central to many accounts of perception. For example, Malebranche (1674) altered it

Eo r;t\zst)ural Jjudgment. Consider his strikingly modern account of the moon illusion
P: 23):

For our lﬂlagl]lﬂno“ does not IePIesellt gIEEt dlstarlCe betWEEll Ob]eCtS ur‘lless it
is aided b}‘ the Slght of Dther ObJECtS betWEEIl them, bey nd whi 1ne
q O
ichit can lmag
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This is why we see the moon much larger when it is rising or setting than
when it is well above the horizon; for when the moon is high, we see no objects
between us and it whose size we might know in order to judge the size of the
moon by comparison. But when it has just risen or is about to set, we see between
us and the countryside, whose approximate size we know, and thus we judge
it to be farther away and as a result we see it larger.

It should be noted that when the moon has risen above our heads, although
we might know for certain through reason that it is at a great distance, we cannot
help but see it as quite near and srnall, because these natural judgments of vision
occur in us, independently of us, and even in spite of us.

5. Actually, the thrust of Berkeley’s theory is to separate geometry from vision but not
from touch. The latter section of that'work (1709, para. 149-160) attempts to establish
geometry as the proper object of tactile impression.

6. Non-Euclidean geometries have a history before the nineteenth century. Torretti (1978},
Davis and Hersh {1981), and particularly Kline (1980) provide overviews. Perhaps the
most interesting sidelight is that Reid (1764) provided some bases for what was later
to become Riemann’s double elliptic geometry (Daniels 1974, Angell 1974).

7. Gauss was not alone in his warnings. Bolyai, codiscoverer with Lobachevski of the
first non-Euclidean geometry, had letters from his father urging him to stop tinkering
(Davis and Hersh 1981, pp. 220-221):

For God’s sake, please give it up. Fear it no less than the sensual passions because
it, too, may take up all your time and deprive you of your health, peace of mind
and happiness in life.

8. Helmholtz (1868) recognized that his notion of intuition was not that held by an
older tradition, He argued that by working on abstract problems, these entities take
on a rich and real existence, It is not one that comes instantly; they do not have “the
effortlessness, speed, or immediate clarity of our perceptions, say, of a room which
we enter for the first time” {p. 380), but they can be imagined.

9, In his Treatise on Human Nature, Hume {1739, book I, part III, sect. I} felt ambivalent
about the purity of geometry in relation to the rest of mathematics:

"Tis for want of such a standard of equality in extension, that geometry can scarce
be esteem’d a perfect and infallible science. :

But here it may not be arniss to obviate a difftculty, which may arise from my
asserting, that tho’ geometry falls short of that perfect precision and certainty,
which are peculiar to arithmetic and algebra, yet it excels the imperfect judgments
of our senses and imagination, The reason I impute any defect to geometry, is,
because its original and fundamental principles are deriv'd merely from ap-
pearances; and it may perhaps be imagin'd, that this defect must always attend
it, and keep it from ever reaching a greater exactness in the comparison of cbjects
or ideas, than what our eye or imagination alone is able to attain.

10. Mill also thought that the foundations of all branches of mathematics, not just geometry,
were empirical.

11. Many disagreed with Poincaré. For example, Hempel (1945) presented a set of ar-
guments like mine against conventionalism of linear perspective: Conventions are
contracts, and it is not clear that the parties involved have the authority to determine
the nature of the contractual form. In science, the simplicity of Euclidean geometry
as a descriptive system for the physical world cannot be explained away by convention.

12. This last view presents a conundrum of two spaces (Strawson 1966): The phenomenal
space of appearances in which we live is Euclidean, and the physical space of the
universe is not. Although this view may seem inconsistent, practically it is not.
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Hopkins (1973}, for example, suggested that the degree of curvature in physical space noted that the eye is naturaily presented with a curved Seo_‘t‘i_lle:;)_’ "l'jl";;‘ ;;‘:g:‘;'ii:
is so small that, on a local level, it cannot be decided whether Phenomenal space is - . large visual angles, There are several pfoble_ms, however, Witk dl_s 1 stimuti Tl{ o
Euclidean or only an extremely good approximation thereof. The differences are so One is that we do not perceive our proximal images; we perceive 1stal stimuli, deb
small as to render the question moot, ' b Is no need for a Cartesian natural geometry of cultural convention, suggested by
The philosophy of geomeiry is still much debated, See, for example, Griinbaum Hansen (1973), to straighten out the hyperbolic curves on the I‘m'utTal 1maige. ]‘/::
(1969, 1973) and Putnam (1963). And the form of physical versus visual geome! simply do not see them except perhaps as part of an introspectionistic exercise Ii
is also of much interest to philosophers. See, for example, Angell (1974), Daniels : ; that of Helmholtz (1866). ith
(1974), Roberts and Suppes (1967), and Suppes (1977). : Both Helmholtz and Hansen reported that, when an observer fixates wit one eye
13. This is the treatment that Gibson (1976b) gave in his reply to Berkeley, , : some location near a straight edge, he or she can see th.at edge as curved. Co.nsl,ider
14, See also Kenyon ( 1898), Pierce {(1898), and Miles (1931). : the vertical edge of a door, where the top and bot.tom project to the ext-re.-n'u.ed;:ae:pt tt;r-y
15. See Ames (1951, 1960), Titelson and Kilpatrick (1951), Tttelson (1952), and Kilpatrick and the middle of the door to a reglon just outside the Parafo‘jf-‘a- Itis said t a ‘i
{1961). edge will look like it arcs overhead and beneath the observer's feet. It doesn t loo
16. Gehringer and Engel (to be published) have shown that distortions of size and depth this way to me, but I do not deny that with glasses t_]-Eere is ‘;Fha}pparent Ct"vta;;l;:
in the Ames room are reduced by almost an order of magnitude with stereoscopic to some straight fines at the corners of rooms and Ceﬂmgs.- ithin moments, delog
vision and observer movement, . curvatures are adapted to and are no longer apparent. This fact might be mo g e
17. Despite his interest, however, Gibson performed few formal analyses of vision, His with hyperbolic geometry. But with different glasses, the edges thmo‘;‘*s may tﬁ“;
most quantitative effort was a collaboration (Gibsan et ai., 1955), in the opposite direction, consistent with an ‘3‘“1Pth geometry. Rat] er; anI say :t
18. See, for example, Hardy et al. (1953), Blank (1978), and Indow and Watanabe {1984); the visual system is tailored to one HDH'EUChdeén geometry or anot er,f 51’“333
Suppes (1977) provides a philosophical overview. that it is simply not hypersensitive to curvature, with a reasonable region of tolerance
19. Riemann Proposed a system of geometries with different curvatures: positive (elliptic), centered around Euclidean geometry, f straight lines in panoramic pho.
zero (Euclidean), and negative (hyperbolic), Traditionally, the Positive-curvature It is clear, however, that we see .the curvature o stralgd : 11;}‘135 “; Pe“mf e inF:a "
geometries are called Riemannian and the negative-curvature ones Lobachevskian tographs (see Malde 1983), tl"hese lines actl.}aHy are curve In the plan p t'gn
(see Davis and Hersh 1981). The entire descriptive system, however, is called Rie- itself. But this fact is an art:fgct, an enstens:von of Panofslfyfs achcount 0 C?,E;en loe
mannian, easily creating confusion, In general, the literature on non-Buclidean visual in depiction, The photograph 1s a proximal image fml: wc;jhtn} the Cam:f};'ectsen;l:e
space deals with empirical investigation into Riemannian curvature, and the particular look at the picture, we see this image rather than the dis al array o d Jects. 5
geometry supported is usually Lobachevskian. ) curved lines in the panoramic photograph are the result of talfmg a curved projection
20. More recently, Indow and Watanabe (1984) have ysed moving fights and found of the real world through a particular camera iens and Hattening that image out onto
essentially the same results as Luneburg (1947) ang Blank (1978). The displays, a plane,
however, are stil] impoverished, consisting only of a pair of lights moving along the
Z axis. Moreover, it should be noted that not all those who have reviewed the resulis Chapter 5 Invarianis
of the alley experiments regard them as evidence for a non-Euclidean space (sce, for : . .
example, Fry 1950, Griinbaum 1973, chap. 5). pace( : : 1. The first half of this chapter is reworked from the Journal of Experimenial Psychology:
21. Indow (1982) is an exception, He ran observers in horopter and ailey experiments . ] Human Perception and Performamfe, 1983, 9:310-317. I problem of ‘perception
in both darkened and illuminateg conditions and found curvature results for both, - - 2. There are, of course, many candidates for the fundamental pro (:m i pere pentai
Talso realize that I am skating on fairly thin ice here. Much of my own research Consider f(_)ur. F irsi;, Titchener (1906, P’-J 15) s}lllg'gested ;hat y;e mui arit};z:omnl;i ne.’’
has dealt with a smail number of lights seen in a dark surround (see, for example, expetience mtollts s:mpl.es.t components” and c%lscovs.erhm;t ose ¢l eir;lon 2o recon:l_
Cutting 1981a, 1982a; Cutting and Proffitt 1982; and Cutting et al. 1978). The dif. But the centrality of this idea sho.uld be questioned; t ethetompoiever oceur. Ml
ferences, I'hope, are important. Although my stimuli were points of light that appeared position of percepts Aassumes a kind of Inental process that may '
on a dark field, they moved in a coherent and mechanically reasonable fashion, (1865) debated Hamilton (1858) over this same issue. t “start from stimuli defined
providing rich structural relations among parts, The crux of these demonstrations is Second, Hayek (1952, pp. 7-8) proposed that :ehmusths ar ety opned
that a relatively small number of lights can reveal rich spatial relations, al] of which in physical terms and proceed to shij why and how the ser:e dife { Physical
are mathematically specified when a few assumptions, such ag tigidity and planarity stimuli sometimes as alike and s?n:.enmes as d:f{erent, an_d winy ”IB e:e}r: PhY o
{Hoffman and Flinchbaugh 1982), are made. The normal environment is richer still, stimuli will sometimes appear as similar and somenmeias ﬁlfferfﬁ t; ou l::l Er?iiﬁi’?l
22, Indow (1982) has adopted Poincaré’s (1905) position in this regard: All measuremens dimensions most appropriate to the observer may not be those that wou ¥
are interconvertible between Riemannian and Euclidean Spaces. But there remains occur to the PSYChOPhYS‘CISt' d mechani Lindsay and Norman
the problem of measurement under impoverished conditions, which in the Luneburg A third approach is to focus on processes an 1;“:: famsms: o djs)c(over the psy-
fradition yields a Riemannjan Space, and measurement under norma] conditions, (1972, p. 1), for example, proposec_l that “the task before us 18 irine di psy
which yields a Euclidean space, d chological processes that are operating and as much as possible of the wiring lalgl(';im
23. A third group interested in curved geometries consists of graphic engineers, pho- : of the neural networks that are involved.” But such a view P':ingoses ::‘gfwiszugz
tographers, and other artists, Rudiments began with Leonardo {Richter 1883), who : about what is processed and what the perceptual systems need to do, a s

was dissatisfied with strictures of perspective. Among modern writers, Reggini (1975) that can no longer be ignored (Marr 1982),
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A fourth approach is that of Shepard (1981, p. 283}, who claimed that “the problem
of internal representation looms as the central problem of perception.” But the focus
on internality (or mental events), like that on process, assumes too readily that external
sources of representation are well described and well established, a view with which
I cannot agree.

3. The appearance of the term invgriant here is due, in part, to translation. The same
phrase appeared in Cohen and Wartofsky (1977, p. 136) as “lawlike behavior.”
Similarly, Cassirer (1944, p. 10; translated by Gurwitch} quoted Katz as follows: “The
idea of invariance, which is an epistemological problem of validity of the foremost
importance, has one of its roots, and perhaps the most nutritive one, in the psychology
of perception.” But in a different translation of Katz (1935, p. 185, by MacLeod and
Fox) the same statement appeared as: “The concept of ‘constancy,” which involves
an epistemological problem of the greatest importance, has perhaps its most important
root in the psychology of perception.”

4. See, for example, Baird (1970), Cassirer (1944, 1945), Hochberg (1974, 1979).

5. Meanwhile, the concept of invariance cropped up in the perception literature inde-
pendent of Gibson, See, for example, Allport (1955), Heider (1958), Luchins and
Luchins (1964), and Platt (1970).

6. Luchins and Luchins (1954, p. 315) expressed exactly this concern over the importation
of mathematical terms into psychology:

Psychologists use . .. mathematical terms . ... But they often fail to specify
whether or not these terms and symbols have the same meanings as in math-
ematics, and thereby, it seems to us, pave the path for confusion.

7. See Bell (1945) and Klein {1908).

8. See, for example, Julesz (1971), Michaels and Care]lo (1981), Piaget {1970), Shaw
et al. (1974), and Shaw and Pittenger (1977).

9. Cutting (1981b, 1982b) and Cutting and Proffitt (1981}

10. This asymmetry is to be contrasted with structural invariants and structural variants,
as both would seem to exist. Thus the term strucfural invariant seems better than
transformational invariant, although without the benefit of its paired member, the
former term may be redundant. Its use (see, for example, Shaw and Pittenger 1977)
also seems not far removed from structure invariance as used in measurement theory
(Luce and Krumhansl 1986).

11. This point was made by Hochberg and Smith (1955), Epstein and Park (1964), Freeman
(1965, 1966), and more recently by Rock (1983).

12. See also Topper (1977, 1979).

13. See Russell (1927), Balzano (1980), Palmer (1983}, and Warren and Shaw (1984) for
opposing views.

14. There are, of course, a number of exceptions, among them Cutting et al. (1978) for
the perception of gait and Proffitt and Cutting (1980) for the perception of rolling
objects, neither of which was discussed as projective invariants; Todd {1981} for the
perception of moving objects; and, more generalty, Ullman (1979, 1981) for the
perception of rigid objects. See also Clocksin (1980), Koenderink and van Doorn
(1975, 1981), Longuet-Higgins and Prazdny (1980), Lee (1980a), Nakayama and
Loomis (1974), and Prazdny (1983b) for optic flow; the ideas discussed in these papers
are considered in more detail in chapters 10 through 13.

15. Some have suggested that Gibson gave up one-to-one mappings. But as Ullman
{1980) noted, there are two mappings to consider: that from the distal object to the
proximal image and that between image and percept. The only mapping that 1 am
concemed with here is the first, which concerned Gibson throughout his career.

16. To be sure, Gibson (1954b, 1966) talked about equivalent sources of information,

17.

18
19,
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and hence perhaps equivalent invariants, but he did so only in the context of the
relation between pictures and what they represent or in the context of different
sensory modalities, Gibson (1972, p. 226) also said:

If unequivocal stimulus information is made available to an observer in an ex-
periment, his perception will be determined by it and by nothing else. When
‘ambient stimulus information is available to an observer outside the laboratory
he can select the information that interests him; he can give attention to one
part instead of another, but his perception will be determined by the information
he attends to.

In the latter part of this passage, Gibson speaks of an observer attending to different
parts of what he or she sees, surely picking up different invariants, That process,
however, is not relevant. My claim is that the whole of an object, under some cir-
cumstances, is specified by at least two different sources of information (invariants).
These sources are not equivalent, despite the fact that they specify the same thing.
In the earlier patt of tlie quotation, Gibson suggested that if unequivocal information
is given to the observer, his or her perception will follow. But in the experiments in
later chapters two sources of unequivocal information are displayed and the observers
generally use but one,

See, for example, Cutting and Millard (1984), Epstein (1981), Flock (1965), and Rosinski
and Levine (1976).

. See, for example, Goldstein (1981) and Cutting (1985).

My definition of an invariant differs from that typically given in the ecological approach
(Gibson 1979, Michaels and Carello 1981) in my rather ardent demand for a particular
kind of mathematical specificity. Generally, I claim that if the invariant exists, it can
be measured, with a numerical value or a relation among numerical values placed
on it In fact, with Lappin (1984) I like to think of perceptual process, in part, as the
measurement of this information. [ may be overly strict, but this constraint serves as
a check on invariance. I suggest that if someone proposes an invariant but cannot
measure it by determining its numerical value on the scale of real numbers, then we
should be wary. I mistrust discussions of topological invariants {(such as number of
edges, surfaces, and holes) that allow no.measure except the cardinal numbers. Al-
though Chen (1982) reported that topclogy influences the discrimination of briefly
presented displays, Rubin and Kanwisher (1985) reported that his results are probably
an artifact of luminance differences. It is possible, of course, that we might yet find
topological invariants that are perceptually useful. The focus of expansion might be
one, but in chapters 10 through 13 I find no real evidence for its use,

Chapter 6 Cross Ratios

1.
2,

See, for example, Hochberg (1978a) and Rock (1983).

Pylyshyn (1984) argued that the only psychophysical experiments worth doing are
those requiring no cognitive intervention or, better yet, those that are impervious to
cognitive intervention. None of the tasks employed in this work are of this kind, but
this does not dismay me at all. Although I am sensitive to concerns of demand
character by stimulus selection, the designs I employ in chapters 7 through 9 allow
alternative response patterns. It is those alternatives that interest me, and the paradigms
bias the participant in neither direction,

. Experiments 1, 3, and 7 were first reported at the 15th Annual Meeting of the Society

for Mathematical Psychology, Princeton, New Jersey, in August 1982, and at the
23rd Annual Meeting of the Psychonomic Society, Minneapolis, Minnesota, in No-
vember 1982. Experiments 5 and 6 were reported at the 8th Annual Interdisciplinary
Conference, Steamboat Springs, Colorado, in January 1983.
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For those not familiar with experimental procedures, a statistical note is in order.
Data are almost always contaminated by “noise,” or random error. This noise may
result from the improper presentation of a stimulus (computers are not always smoothly
performing), inattention on the part of the perceiver, spontaneous neural activity in
the visual system, shifts in criterion for initiating a particular type of response, poor
coordination of action, poor motor performance, or any number of other causes. At
all points in the information-delivery and information-processing systems, small per-
turbations can occur that result in less than perfectty clean data. No amount of tidying
up of the experimental situation or of training participants can ever wholly get rid
of noise. Thus a perceptual psychologist must assume that responses are probabilistic;
they are more or less randomly sampled from distributions of possible responses that
a systematic observer might make. The larger the number of responses, the more
secure the performance estimate. We can consider the sample of estimates as having
some modal (or mean or median) value as its central tendency. Of course, many of
these estimates are lower than this central estimate, and others are higher. The central
limit theorem, however, suggests that the sample mean converges to the population
mean.

Statistics are invoked when this mean is compared with performance expected by
chance. The burden of chance is great in psychological methodology, and it takes
the form of a null hypothesis, a theoretical prediction that there is nothing but random
error in the data. We assess the plausibility of the null hypothesis {we can never
prove it wrong). Its rejection is based on the likelihood ratio, or probability value (p
value), that a given outcome could occur by chance. The standard criterion for rejecting
the null hypothesis, and going on to consider other more interesting hypotheses, is
that the probability must be less than 0.05 (an occurrence by chance of 1 in 20).

The statistical techniques that I report—TF tests, ¢ tests, and x* tests—are all part
of the standard armamentarium of experimental psychology. Each of these symbols—
E, t, or x>—is followed by.a number or numbers in parentheses, an equal sign, and
another number before the p value, These values allow the statistically more so-
phisticated reader to assess the manner in which I make my conclusions.

. Stimuli were generated on-line by FORTRAN programs on a Hewlett-Packard (HP)
1000L Series computer and displayed on an HP 13508 vector-plotting display system
with a P31 phosphor. This phosphor is one with relatively rapid decay when seen
in room light and allows presentation of smoothly moving green elements on a black
background. Resolution on this 40-cm display (measured diagonally) is 1024 by 1024
programmable locations.

I participated in all experiments; one undergraduate student (SR) participated in
experiments 1-3 and 5-7; one graduate student {(CB) participated in experiments 1,
3, and 7, and a second graduate student {(RM) participated in experiments 2, 5, 6,
and 8. Each experiment involved many sessions, and sessions were generally distributed
over several months’ time,

Fach experiment consisted of many #locks, each a complete replication of all possible
types of trials (usually 16), randomly ordered before the block begins. A #rial consists
of a fixed sequence of events. It begins with a warning tone, alerting the viewer to
the presentation of the stimulus. Simultaneous with the tone is presentation of the
within-block trial number at the center of the display screen. One second later the
stimulus begins and cycles through its motion. three times, Durations varied from
5.3 to 13.3 sec, depending on the case studied. The viewer was prompted at the end
of stimulus presentation by another tone and asked to make a judgment indicating
whether the stimulus was rigid or nonrigid (or flat or not flat in experiment 7). The
viewer responded on a console keyboard and was given immediate feedback. No
reaction time was measured, and nothing other than accuracy was stressed. Then
followed an intertrial interval of 5.5 to 20 sec, again depending on the case studied,
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during which the next trial’s stimulus was computed. This sequence of events repeated
until the end of the last trial of a block. The viewer was then informed on the console
screen how many responses were correct and given the opportunity either to quit or
to go on to the next block. Responses and stimulus conditions were stored in a
computer file when the viewer ended the session. Each block duration was 6-18 min
long, according to the experiment.

Before the first block of each session, the participant entered a starting value indicating
the degree of change in either displacement or cross ratio, If the viewer got more
than 75% of the trials correct within the first block, that value was quartered for the
next block; if the viewer got less than 75% correct, that value was doubled; otherwise
it was unchanged. In this manner, so long as the viewer ran through a substantial
number of blocks within a session, performance across blocks stabilized near 75%
correct.

Chapter 7 Cross Ratios and Motion Perception

1. Consider a plane one arbitrary unit across, rotating around a central vertical axis. If
all lines are equally spaced throughout that plane, they appear on it {moving from
left to right) at equal intervals of 0.333 unit: line A at ~0.500 unit from the central
axis, B at —0.167 unit, C at +0.167 unit, and D at + 0.500 unit. However, each line
was randomly placed within a region that centers on these values, with a width of
0.267 unit. Thus line A appeared anywhere between —0.633 and —0.367 unit, B
between —0.300 and —0.033, and so forth. In this manner, adjacent lines could be
as close as 0.067 unit and as far apart as 0.600 unit, and the lines farthest apart (A
and D) could be separated as littte as 0.733 unit or by as much as 1.267 units. No
pairwise or higher constraints were placed on the positions of the lines. Cross ratios
varied randomly within a skewed distribution from 0.191 to 0.988, with a mode of
0.830.

Rotation of these four-line objects through 360° was accomplished in 72 frames,
5° per frame and successively presented. Each frame was displayed for 47 msec, with
no interval between frames, In this manner, one rotation of the object took 3.4 sec,
and because the stimulus rotated three times within a trial, recycling the 72 frames
twice more, the total trial duration was 10.2 sec. Starting and ending positions for
every stimulus were generated such that the plane of the four lines was nearly parallel
to the line of sight. The first frame began with the plane 2.5° out of parallel to the
right (line D slightly to the right of the viewing axis) and the 72d frame ended with
the plane 2.5° out of parallel to the left. Perfect alignment was avoided because the
overlap of the four lines caused a striking increase in momentary brighiness of the
display.

2. The rate of the secondary motion followed a cosinuscid (1 — cos a}. Let 0° represent

frame 1 (nearly aligned with the line of sight); 90°, frame 19 {nearly orthogonal to
the line of sight); 180°, frame 37 {again, nearly parallel); and 2709, frame 55 (again,
nearly orthogonal). At frame 1 the rigidity-violating line was the origmal position.
By frame 19 the line had moved to half its maximum displacement, by frame 37 to
its maximal displacement, and by frame 55 back to half. From frame 72 and back to
frame 1, the line returned to its initial position. Phenomenally, it was at least as
compelling to see this line leaving the plane of the others, even though all elements
remained end aligned, as it was to see it move laterally within the plane.

3. Initial values for CB and me were 0.10 unit, and those for SR 0.15 unit. Consider

two factors about these initial displacements. First, their value is 10% (or 15%) of
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the width of the spinning plane, and second, given that the two lines could be as
close as 0.067 unit (or 6.7%), an occasional trial had the ordinal positions of the two
lines exchanged. This, of course, was an obvious sign of nonrigidity and made for
an easy trial, Over all blocks, however, such an exchange happened only once or
twice for each subject.

. My initial values were 0.10 and those for CB and SR, 0.15. As for condition 1, there
was an occasional trial that transposed ordinal positions of moving lines with a static
line. This occurred because the initial ratios could be generated to be as high as 0.988
and because any cross ratio greater than 1.0 has transposed elements, A with B or
C with D. Because no cross ratio less than 0.191 could be generated, given the
constraints, decreases in the cross ratio of 0.15 and 0.10 never involved transposition
(B with C).

. Across the 28 blocks of my data, the main effect of performance for motions of lines
A through D was highly reliable, F(3, 81) = 8.14, p < 0.0001. Across 16 blocks 5R's
data showed essentially the same pattern, F(3, 45) = 5.27, p < 0.005; as did CB’s
across 20 blocks, F(3, 57) = 9.76, p < 0.0001. Quadratic trend tests were all reliable,
with accuracy of detecting motions of lines B and C significantly higher than those
for A and D: For me, F(1, 81) = 19.5; for 5R, F(1, 45) = 13.1; and. for CB,

- F(1,57) = 20.43; all of us had p < 0.001.

. Across 39 blocks of trials there was no regular variation in my data, F(3, 144) = 1. 03
p = 0.38; none in those of SR over 28 blocks, F(3, 81) = 0.81, p = 0.49; and none
for CB over 26, F(3,75) = 0.63, p = 0.60. These results are further supported by
trend analyses. The displacement hypothesis predicts an upwardly turned parabola..
Although all three participants appear to show a weak trend in this direction, none
was reliable at the usual statistical criterion of 0.05: For me, F(1, 114) = 3.35, p = 0.07;
for SR, F(1, 81) = 0.99, p = 0.35; and for CB, F(1, 75) = (.83, p = 0.37.

Secondary analyses support these findings. Consider first the data from condition 1.
Although displacement was the primary experimental variable, change in the cross
ratio was recorded for each trial in each block. For each observer, then, we can pool
within a block all nonrigid trials in which the observer incorrectly reported the trial
as rigid and compare these values with those for nonrigid trials correctly reported
as rigid. My mean of median cross ratio change values for incorrect and correct trials
was 0.034 and 0.052, #(23) == 4.49, p < 0.001; those for SR were 0.061 and 0.121,
#14) = 3.37, p < 0.01; and those for CB, 0.042 and 0.103, £(14) = 2.63, p < 0.05.

Finally, consider &’ analyses, which measure cbserver sensitivity independent of
response bias. As expected, all viewers showed monotonically decreasing performance
with decrease in the within-block cross ratio variation. At cross ratic changes of
0.100, 0.050, 0.025, and 0.013, my &’ scores were 2.90, 2.17, 1.19, and 0.03, respectively.
Values for SR at cross ratio changes of (.150, 0.075, 0.038, and 0.019 were 2.42,
1.54, 0.67, and (.27, respectively; and corresponding values for CB, 2.87, 1.94, 0.71,
and 0.00. My sensitivity remained above chance at changes of 0.025, and for SR and
CB at 0.038.

. Under condition 1 all viewexs participated in 15 blocks. I demonstrated the same
main effect as before, F(3, 42) = 23.6, p < 0.001, with a reliable quadratic trend,
F(1,42) = 65.2, p < 0.001. SR showed the same pattern, F(3,42) = 5.01, p < 0.005,
and F(1, 42) = 14.67, p < 0.001 for main effect and quadratic trend, respectively; as
did RM, F(3,42) = 7.11, p < 0.001, and F(1, 42} = 16.3, p < 0.001.

Under condition 2 all viewers participated in 20 blocks. There were no reliable
main effects at an alpha level of 0.05: F(3, 57) = 2.26, 1.38, and 1.36 for SR, RM,
and me, respectively. Trend analyses were computed by using the mean distances
of each element to the axis of rotation {minus the average distance of all elements

10.

11.
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from that axis) as trend weights. For example, the mean distance of lines A through
D from the axis of rotation for me were 7.46, 3.80, 0.94, and 2.28 arbitrary units,
respectively. The grand mean of these values is 3.62. Thus the trend weights used
in analysis of variance are 3.84, 0.18, —2.,68, and — 1.34, respectively, for A through
D. For none of the observers were these trend tests reliable: For me, F(I1, 57} = 0.30;
for SR, F(1, 57) = 1.10; and for RM, F(1, 57) = 1.69.

To test the Weber fraction hypothesis, a series of partial correlations were calculated
from the trial-by-trial data of condition 1. Let r,,, stand for the partial correlation
between the judgments of nonrigidity (with 1 the code for a correct judgment and
0 for an incorrect judgment) and the amount of change in the cross ratio with the
Weber fraction of secondary to primary motion removed. Similarly, let r,,, stand for
the partial correlation between judgment and the Weber fraction with the change in
cross ratio removed. The data of all three observers showed larger values for r,,
than for r,,,: Those for me were 0.50 and 0.25; for SR, (.25 and 0.18; and for RM,
0.36 and 0.03. Values were reliably larger for RM and me, x* = 6.88 and 5.78,
p < 0.05, respectively, but not for SR. These data are consistent with the idea that
change in cross ratio, and not a Weber fraction, is the primary cause of the results,
Correlations for the results of condition 2 corroborate this view. For SR, RM, and
me, r = 0.07, 0.13, and —0.04, respectively, offering no support for the Weber fraction.

. Line A, the highest rung, was placed at an average height of 1.0 unit, B at a height

of 0.70 unit, and C at 0.40 unit. Line D was always at 0.00 and stayed in place as if
firmly on the ground, It, like A, bounded the length of the ladder. Lines A, B, and
C could vary in height in their placement, up or down by as much as 0.09 unit. Thus
A was randomly placed between 1.09 and 0.91 units above the base (line D) and so
forth. This generated a somewhat different population of cross ratios, with fewer as
low or as high as in experiments 1 and 2. The modal cross ratio for these stimuli
was 0.780, with a minimum and maximum of 0.390 and 0.921, respectively.

Toppling was through a projected path of 90°, from fully erect to prone on the
plane of support. The movement was accomplished linearly, through successive pre-
sentation of 31 frames, with a stimulus rotation of 3° per frame. Each frame was
presented for 57 msec, for a cycle duration of 1,77 sec. To make stimuli more comparable
with those in the previous study, the toppling cycle was repeated three times, giving
the observer three opportunities to view the stimulus over 5.3 sec,

. The rate of motion of the rigidity-violating line(s}, again, was a cosinusoid {1 — cos a).

Unlike experiments 1 and 2, however, the motion was only from 0° to 90° of that
function. That is, each toppling cycle began with the two stimuli identical, ended
with the rigidity-violating element most out of alignment, and at 45° (frame 16) that
element was 29% through its displacement. Phenomenally, this motion appeared as
accelerated lengthening or shortening of the end segment when lines A or ABC moved,
and it appeared as the sliding of one element when it involved B or C. Unlike those
in experiment 1, the lines of the simuli in this study were nearly always seen as
coplanar,

I began a session by specifying changes of 0.10, and SR and CB began with 0.15, as
before. These values correspond to 11.4 and 17% of the ladder height. Because stimuli
were generated with cross ratios no higher than 0.93, few trials presented transpositions,
and these occurred only for CB and SR at the change value of 0.15.

In my condition 1 data, across 57 blocks, the main effect was highly reliable,
F(3,168) = 10.47, p < 0.0001, as it was for SR across 27 blocks, F(3, 78) = 5.01,
p < 0.005, and CB across 25, F(3, 72) = 3.96, p < 0.05. Quadratic trends for all three
viewers were reliable: For me,F(1, 168) = 24.23, p < 0.0001; for SR, (1, 78) = 7.64,
p < 0.01; and for CB, F(1,72) = 11.27, p < 0.005. The Weber fraction hypothesis
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would predict that motion of line C should be easier to detect than motion of
line B,which in turn would be easier than that of A, Results show detection of motions

in line A inferior to the others, with no difference between B and C. The real test, .

however, concerns lines A, B, and C. A hypothesis that predicts detectability of
secondary radial motion to be a function of the length of the radial arm finds no
support in the fact that trials with A, B, and C in motion are among the most difficult
to detect.

Under condition 2, across my 43 blocks there was no reliable main effect,
F(3,126) = 1.31, p = 0.27; across 26 blocks none for SR, F(3, 75) = 0.87, p = 0.46;
and across 33 blocks none for CB, F(3, 96) = 1.12, p = 0.34. No significant quadratic
trends were found either: For me, F(1, 126) = 0.60, p = 0.44; for SR, F(1, 75) = 0.00;
and for CB, F(1, 96) = 2.46, p = (.12, A Weber fraction hypothesis would predict
performance for detecting motions of line B to be worse than that for C, which clearly
did not occur in any of the three sets of data. It would also predict that the conjoined
motions of lines 4, B, and C would be most easily detected, and this did not occur
either.

Secondary analyses support the primary results. Under condition 1 nonrigid stimuli
incorrectly reported as rigid had reliably smatler changes in cross ratio than did those
correcily reported as nonrigid: Means of medians were 0.037 for incorrect and 0.050
for correct trials for me, #13) = 2.5, p < 0.05; 0.039 and 0.069 for SR, #(18) = 2 46,
p < 0.05; and 0.033 and 0.049 for CB, #23) = 3.38, p < 0.01.

Signal detection analyses of the condition 2 data were calculated from the tables

of Hacker and Ratcliff (1979). At changes in cross ratic of 0.100, 0.050, 0,025, and .

0.013, I yielded &' scores of 2.52, 1.10, 0.78, and 0.15, respectively; for changes of
0.150, 0.075, 0.038, and 0.019, SR yielded scores of 2.20, 1.86, 0.63, and 0.15; and
CB, scores of 1.91, 1.67, 0.55, and 0.10. SR's sensitivity in this experiment was almost
identical with her sensitivity in experiment 1; whereas the sensitivites for CB and
me were somewhat less.

As a proof of cross ratio invariance at nonpreferred viewpoints, consider the following:
Imagine a static frame of one of my stimuli on a film screen. If the observer moves
around the theater at different distances and angles from the center of the screen,
this situation is logically identical with the screen rotating and dilating with a fixed
image on it. The cross ratio of angles projected from that image will remain constant
regardless of where the observer moves, according to the projected-angles proof of
chapter 6, Now, when the next frame of the stimulus sequence is displayed, the cross
ratio has not changed when measured at the preferred viewpoint, nor has it changed
measured elsewhere. And the same will be true for all subsequent frames.

The main effect of stimulus position was reliable under condition 1, F(3, 57) = 13.36,
p < 0.0001, as was the quadratic trend, F(1, 57) = 39.4, p < 0.0001. Under condition 2,
the main effect just missed statistical significance, F(3, 57) = 2.66, p = 0.056, but the
quadratic trend was not close, F(1, 57) = 2.19, p = 0.145.

Video projection systems use a front-projection technique, and the projection surface
on inexpensive models is concave, rather than convex, with respect to the viewer,
More expensive models have flat screens. The reason for the curvature appears to
be for ease of focus and uniformity of brightness and because it was thought that
people like curved screens. As in standard television, these curved projection systems
create distortions for all viewers not sitting directly in line with the projectors and
the projection surface.

Hochberg (1971), in his review of Pirenne {(1970), makes a similar point. Also Kanade
and Kender {1983) discussed skewed symmetries in affine-transformable figures that
lend some substance to this conjecture.
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16. This idea is supported by results of Hay and Pick (1966). Under a control condition

of a prismatic adaptation study, they found that the observers could not discern
curvature in straight lines subtending 45° of +0.6 diopters. In addition, a curvature
resulting from alens of 3 diopters can appear straight after a few minutes of adaptation
{Rock 1984).

Chapter 8 Limitations and Extensions of Cross Ratios

1. To make the difference between cross ratio and density clearer, consider again figure
7.1. The cross ratio can be measured on line L, and on L,, projecting from one to the
other or onto any other line. 1 am measuring density, however, only on L,, the distal
object in the world. To be sure, density could be measured at the projective surface,
L,, but problems arise that I wish to avoid. With polar projection, as used in these
experiments, the density of a point with a rigid object measured on the projection
plane changes during rotation. For example, the density at point B is lower than at
B because A is relatively farther away from B than A’ is from B’. And if L, continues
to rotate clockwise, the density at B’ continues to rise until the plane is aligned with
the line of sight.

For a planar array of lines, the density indexes used in this chapter are invariant
under reflection, dilation, translation, and parallel-projected rotation—but for me this
is not good enough.

- Murdock {1960) used distinctiveness, the inverse of this formulation, in an account
of memory for a list of items. Distance for him was the ordinal place difference among
items.

3. The entire set of calculations took one CPU week on a Hewlett-Packard 10001 Series

computer,

N

4. Block duration was 4-15 min according to condition; sessions varied from 30 min to

2 br at the discretion of the viewer. Short breaks were taken frequently. When
performance was better than 75% on a block, displacements were halved; when it
was 75%, they remained the same, and when it was less than 75%, displacements
were doubled.

For stimuli with three parallel lines, imagine lines A and C fixed on the surface of
a plane 1 unit apart. Line B appears randomly in a position between 0.1 (near A)
and 0.9. Index 4 density was noted for each element. The transparent plane rotated
around a point three-quarters the distance from A to C. For stimuli with four elements,
lines A through D were at mean positions of 0.00, 0.33, 0.67, and 1.00 along the
plane. Each, however, could occur randomly within an area that was 0.30 unit wide
centered on these values. Again, density at each point was noted. The axis of rotation
was at 0.80 unit, typically between lines C and D. And for stimuli with seven elements,
lines A through G appeared at mean positions of 0.00, 0.17, 0.33, 0.50, 0.67, 0.83,
and 1.00 unit, within a range of 0.15. Density values were again recorded, and the
axis of rotation was always between E and F, at (.75 unit.

5. Condition 1: I participated in 15 blocks, and the main effect of ordinal position was

reliable, F(2, 28) = 5.82, p < (.01, Index 4 densities were recorded on each trial for
the rigidity-violating line at the middle point in its excursion (on frames 1 or 37).
Values for lnes 4, B, and C for me were.0.556, 0.848, and 0.588, respectively, as
shown in figure 8.3, By normalizing these values around their grand mean, we can
use the density values as trend weights in an analysis of variance. Because the mean
of these values is 0.664, this value can be subtracted from each mean to yield trend
weights of —0.108, 0.184, and —0.076 for A, B, and C, respectively. The density
trend was highly reliable, F(1, 28) = 10.18, p < 0.005, indicating strong correlation
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between the two data sets. The same patterns were found for SR across 15 blocks:
There was a main effect of ordinal position of rigidity-violating element,
F(2, 28) = 14.69, p < 0,0001, and a reliable trend for density as a predictof of per-
formance, F(1, 28) = 25.07, p < 0.001. The pattern repeated for RM across 20 blocks:
F(2, 38) = 11.58, p < 0.001 for the main effect, and F(1, 38) = 21.89, p < 0.001 for
density. Signal detection analyses revealed the same patterns, Concerning the Weber
fraction hypothesis, no reliable effects were found: For me, F(1, 28) = 0.02, p = 0.89;
for SR, F(1, 28) = 0.006, p = 0.94; and for RM, F(1, 38) = 0.82, p = 0.37.

Condition 2: My main effect and density trend were reliabte, F(3, 42) = 23.7, and
F(1, 42) = 65.2; as they were for SR, F(3, 42) = 14.7 and F(1,42) = 13.9; and for
RM, F(3, 57) = 11.2 and F(1, 57) = 27.6; all of us had p < 0.001. No Weber fraction
trends were reliable: For me, F(1,42) = 2.15;, p = 0.15; for SR, F(1, 42) = 0.62,
p = 0.44; and for RM, F(1, 57) = 0.06, p = 0.81.

Condition 3: My main effect was reliable, F(6, 84) = 16.9, as was the density trend,
E{1, 84) = 96.0; for both, p < 0.0001. And the pattern repeats again for both SR,
F(6, 84} = 7.8 and F(1, 84) = 77.9; and for RM, F(6, 114) = 14.6, and K(1, 114) = 61.1,
all p < 0.0001. Uniike the previous two conditions, however, there was some relation
between Weber fraction and performance. There was no reliable trend for me,
F(1, 84) = 1.89, p = (.17, but there was for both SR, F(1, 84) = 4.66, p < 0.05, and
for RM, F(1,114) = 6.0, p < 0.02. These effects are not simply due to increased
correlation between Weber fraction and density (which did indeed occur). But to test
for this, 1 analyzed the data on a trial-by-trial basis. Point biserial partial correlations

were performed, and both density and Weber fraction emerged as reliable correlates -

of performance. For density the partial correlations were, for me, v = (.38,
#(207) = 5.82; for SR, r = (0,36, {207) = 5.50; and for RM, r = 0.28, (287) = 491,
all p < 0,0001. For Weber fractions, correlations were somewhat, but not reliably,
smaller: For me, r = —0.14, #{207) = —2.08, p < 0.05; for SR, r = —0.12,
H207) — —3.07,p < 0.005;and forRM, r = —0.19, 287) = —3.17, p < 0.005, One
explanation for this effect is that the farther an element is from the axis, the more
difficult it is to discern nonrigidity in the plane as a whole. The reason for this may

be due to display factors. At 21.3 frames/sec, each stimulus rotated orice in 3.38 sec.

Lines near the axis of rotation have small displacements across consecutive frames.
Those farthest away, however, have large displacements, as much as 23 min of arc
per frame. Phenomenally, these lines appeared more blurred or subject to motion
aliasing,.

. Generally, more data were needed than in experiment 5. Given that the null hypothesis
can never be proven, ample opportunity must be given for it to be falsified. Toward
this end, I participated in 73 blocks under condition 1, 40 under condition 2, and 26
under condition 3; SR participated in 50, 50, and 30 blocks under the three conditions,
respectively; and RM participated in 30, 20, and 20.

Condition 1: My main effect was not reliable at an alpha level of 0.05,
F(2, 144) = 2.74, p = 0.068. No density trend can be predicted because equal density
across all positions is, literally, no trend. The Weber fraction showed no reliable
trend, F(1, 44) = 0.09,p = 0.76. For SR neither the main effect nor the Weber fraction
trend was reliable, F(2, 98) = 1,94, p = 0.15, and F(1, 98) = 0.10, p = 0.90. For RM,
the main effect was significant, F(2, 58) = 6.74, p < 0.003, but the Weber fraction
trend was not, F(1, 58) = 0.53, p = 0.47.

Condition 2: My main effect was vanishingly small, F(3, 117) = 0.05, p = 0.98,
and there was no Weber fraction trend. For SR, on the other hand, there was a reliable
main effect resulting almost entirely from her difficulty in discerning motions of
line D, F(3, 147) = 6.3, p < 0.0005. This effect, however, cannot be attributed to a
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Weber fraction, F(1, 147) = 0.58, p = 0.45. RM, like me, showed neither a main
effect, F(3, 57) = 1.09, p = 0.36, nor a Weber fraction trend, F(1, 57) = 1.92, p = 0.28.

Condition 3: I showed neither a main effect nor trend, F(6, 150) = 0.28, p = 0.95
and F(1, 150) = 0.03, p.= 0.86. There was, however, a main effect for SR,
F(6, 174) = 3.60, p < 0.002, but no Weber fraction trend, F(1, 174) = 0.24, p = 0.63.
And there were marginal effects of both for RM: F(6, 114) = 1.823, p = 0.10 and
F(1,114) = 3.48, p = 0.065, respectively. RM did not repeat a reliable Weber fraction
trend for experiment 5 under condition 3. The nonuniformities in data sets, although
relatively modest, are somewhat peculiar. For RM under the three-element condition
and for SR under the four-element condition, the line that was by itself on one side
of the axis of rotation was relatively difficult to discern when moving in a rigidity-
violating manner. These results are clearly not effects of proximity to the axis of
rotation because the Weber fraction hypothesis predicts that performance ought to
be better the closer the rigidity-violating line is to the axis,

One possibility for the reliable effects of SR and RM is that different exponential
constants, k, may be used by different observers, The lower the value, the more the
central elements of the display will generally have higher denisties, compared with
peripheral ones, Thus the top two panels of figure 8.2d would show higher central
peaks for B and C of the four-element array and C, D, and E for the seven-element
array. Conversely, the higher the &, the more the peripheral elements show peaks.
Given that throughout the experiment the exponential constant was fixed at 3.33,
the nonrigid trials involving central elements might be relatively harder for a viewer
who is modeled better with a lower constant and relatively easier for those modeled
better by a higher constant. To assess this possibility, quadratic trend tests were
performed on the data of SR and RM under condition 3. Both were reliable; for SR
it was a concave parabolic function, F{1, 174) = 2.96, p < 0.05, and for RM a convex
function, F(1, 114) = 8.09, p < 0.005. Systematically retransforming the data by the
differential weights obtained from the different exponential constants, I estimated
the best-fitting exponential constant for the data of SR to be 1.6 and that for RM to
be 6.7. It should come as no surprise that the constant of 3.33 fit my own data best,
as extensive pilot testing indicated a value in that range to yield the flattest functions
across ordinal positions for me. Unfortunately, the patterns of results from conditions
1 and 2 do not lend themselves to an assessment of the parameter values of the
exponential constants.

. Ullman (1984) proposed an incremental model for rigidity detection like the spring-

dipole model of Julesz (1971). Each pair of points in an array can be connected by
a spring with a spring constant associated with it. Ullman assumed that lower constants
could be used for longer springs (corresponding to less dense regiens in an array)
or that long distances between points could be ignored altogether,

Chapter @ Cross Ratios versus Flow Veciors

1. In experiment 7 the secondary motion of one element was uniform with respect to

the primary motion of the other three-~-its instantaneous displacement is simply more
or less by a constant, the difference in its value of y. Thus, unlike the displays of

~ previous experiments, these allowed perception of the. fourth element in rigid con-

figuration with the others, but not on the same plane.

. Placement of the four parallel lines was again random within certain regions. The

modal spacing was uniform, just as in experiments 1, 2, 4, and 5. Displacements
within these regions were also the same. The course of optic flow of all elements
was cosinusoidal. The stimuli started at a mean distance of 14.5 eye heights (for all
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four lines), came as close as 5.5 eye heights, receded to 14.5 again, and repeated this
cycle two more times. A cycle consisted of 120 frames, each presented for 37 msec,
for a cycle duration of 4.44 sec and a trfal duration of 13.3 sec.

. Under condition 1, across 40 blocks I showed no main effect, F(3, 117} = 2,02,p = 0.11;

nordid SR across 30 blocks, F(3, 87) = 1.46,p = 0.23. On the other hand, CB showed
a strong main efiect across 30 blocks, F(3, 87) = 10,0, p < 0.001. Essentially the same
pattern accrued for tests of quadratic trend: My trend was only marginal,
F(1,117) = 3.33, p = 0.07; for SR it was essentially nil, F(1, 87) = 0.82, p = 041
but for CB it was as prominent as any in this set of studies, F(1, 87) = 71.6, p << 0.0001.

Under condition 2, all effects were reliable: Across my 14 blocks, F(3, 39) = 12.66,
p < 0.001; 36 blocks for SR, F(3, 105) = 5.68, p < 0.002; and 28 blocks for CB,
F(3, 89) = 5.02, p < 0.01. All viewers showed reliable quadratic trends: For me,
F(1,39) = 37.9; for SR, F(1, 105) = 17.02; and for CB, F(1, 81) = 15.99; ali p << 0.001.

. Across blocks and trials of condition 1, the correlation between eye height and cross

ratio change was high: r = 0.43, 0.28, and 0.53; and under condition 2, r = 0.42,
0.51, and 0.62, for SR, CB, and me, respectively; all p < 0.0001.

As before, changes in cross ratio were recorded for condition 1 and differential
eye heights for condition 2. Under condition 1, any support for cross ratio should
be found in the means of median changes in cross ratio for incorrect and correct
trials. For me, they were 0.037 and 0.046, respectively, 29} = 1.15, p = 0.15; for
SR they were 0.083 and 0.087, H29) = 0.42, p = 0.51. Thus the secondary data of
neither viewer support the idea that cross ratio is perceived in these displays. CB,
on the other hand, showed a marked difference: 0.039 and 0.119, #23) = 6.57,
p < 0.0001. Thus cross ratio did seem to play a role in his perception. Under condition
2, eye height differentials for incorrect and correct trials were recorded. My means
of medians were 0.012 and 0.035 eye height, #(18) = 6.09, p < 0.001; for SR they
were 0.032 and 0.052, §27) = 4.04, p < 0.001; and for CB they were 0.016 and
0.029, ¢(22) = 4.29, p < 0.001. Thus information about differential eye heights ap-
peared to be used by all three participants.

. Simpson (1983) also showed that cross ratios are not always useful. His purpose,

however, was to demonstrate that cross ratios are not necessary for the perception
of rigidity, but because he never measured nor varied them to test the sensitivity of

the perceptual system, he did not address the sufficiency of cross ratios for the

perception.

The displays of experiment 7 actually rotated a small amount. When the front element
{line A) of the stimulus was at a projected distance of 13 eye heights, the stimulus
plane was nearly parallel to the Yine of sight (176°), but when it was at a projected
distance of 4 eye heights, it was more out of parallel (166°), yielding 10° rotation,

. The instantaneous change in § with respect to 8 is given by

rzcos @ —xsin@) — 1
¥ 4+z224+ 17— 2rzcos f— xsin§)

0 /dg =

This relation does not simplify as handsomely as Egs. (9.2)-{9.4), but we should be
wary of criteria that assume perceptual, and mathematical algorithms should both
strive for simplicity. Cumbersomeness of expression does not, by itself, lend force
against perceptual utility (Marr 1982).

It also happens that the motion of the planarity-violating line is similar to the
nonrelational cue used in experiments 1 through 6—its lateral displacement without
respect to the positions of the other elements. Here, however, the displacements are
greater for elements farther away from the center of the circling plane, whereas with
the nonrelational cue, secondary displacements would be uniform regardless of
position.
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8. The random placement of elements within the plane was identical with experiment 1.
The center of the object plane’s path was six imes the width of the mean stimulus,
and the radius of that path was equal to the mean stimulus width. Circulation time
was 3.4 sec, equal to the rotation times of experiments 1, 2, 4, 5, and 6, Again, 72
frames of the stimulus were shown for 47 msec each. Frame 1 showed the stimulus
closest to the observer, frame 37 farthest away, frame 19 rightmost, and frame 55
leftmost. Each trial presented three circulations. The secondary motion of the planarity-
violating line followed a cosinuscid, As before, the movement of this line could be
seen as nonrigid lateral motion within the object plane or as circular motion out of
the plane. It was most readily seen as the latter by both viewers.

9. Under condition 1, my data across 40 blocks showed no reliable main effect,

F(3,117) = 1,76, p = 0.16, but there was a small parabolic trend, F(1, 117) = 4.89,
p < 0.03. RM’s data showed a similar pattern across 40 blocks: No main effect,
F(3,117) = 1.89, p = 0,135, but a small parabolic trend, F(1, 117) = 5.44, p < 0.025,
These trends are not consistent with the idea that displacement patterns are the only
information used in the perception of these displays. But trial-by-trial analyses show
that cross ratios seem not to be involved in these trends. Median values of cross ratio
change were recorded for correct and incorrect trials, but neither participant showed
a difference. For me, the cross ratio change values for incorrect and correct trials were
0.037 and 0.033, respectively, {(32) = —0.46, p = 0.64; and for RM they were 0.023
and 0.028, {28) = 1.02, p = 0.32, Thus these analyses provide no support for the
cross ratio,

Under condition 2, I showed a large main effect and parabolic trend, F(3, 87) = 5.97
and F(1, 87} = 16.6, p < 0.001; as did RM, F(3, 87) = 9.56 and F(1, 87) = 25.47,
p < 0.001.

10. It is interesting that, whereas Gibson’s position on invariants and Johansson’s on

projective geometry are closely allied, the two were never merged. The lack of synthesis
may have been due to an overriding conflict. Gibson, while espousing invariants,
could not fully acknowledge the importance of projective geometry because it has
no concept of occlusion. On the other hand, Johansson, while espousing projective
geometry, doubted the complete utility of invariants to perception because so much
of his work relies on decoding principles. This work clearly sides with Johansson.

Chapter 10 Ways of Wayfinding

1. Consider an individual running through light brush, fleeing from danger and trying

to avoid running inte branches and trees. Judging the direction of movement is
couched as the angle between the current linear path and that needed to be taken
in order to avoid the object, usually specified as a continuous uniform turn. The
solution to this problem, and others to follow, is an application of a standard physics
problem (see, for example, Sears et al. 1980} with the addition of some psychological
assumptions. We start with the equation: F, = mv*/r, where F, is the centrifugal, or
outward, force on the object in question, m is its mass in kilograms, v its velocity in
meters per second during linear movement, and r the radius of the circle whose
perimeter forms the path of avoidance. This radius must be small enough to permit
the runner to skirt around the tree. For a circular path, the outward force exerted is
specified in the given equation. This force must be counteracted by an equal centrifugal
(inward) force. Human beings accomplish this by leaning into the direction that they
turn. This lean cannot be too extreme, given a flat terrain, otherwise slips will occur
as a result of inadequate friction between foot and ground. Given soft, flat turf, a
person can probably lean as much as 25°,
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A normal runner should be able to maintain a velocity of 5 m/sec (about 11 mph)
for a moderate distance. If the individual weighs 65 kg (about 143 lbs), then the
following relation holds: F, = 1625/7. If the runner leans inward by 25° then
T, = sin a mg, where a is the angle of lean, m is the person’s mass, and g is the force
of gravity (9.80 m/sec?). Substituting these values, F; = 292.2 kg -m/sec’. Because
T, and F, must be equal, 292.2 = 1625/ By rearranging terms, we obtainr = 5.56 m.
Thus, given the assumptions above, the radius of curvature that can be undertaken
in a path of avoidance is 5.56 m,

Next we must determine how wide a clearance the runner needs to give the tree.
If we assume that its trunk is vertical and has minimal thickness, the clearance is
the sine of 25° (0.4226), the angle of lean, times the tunner’s height. If the runner
is 1.75 m tall (about 58"), then the clearance needed is 0.74 m. Because a runner’s
foot is not infinitesimally narrow, we should probably increase this value to about
1.0 m. The end result is equivalent to a situation in which there is no inertia and
the runner is moved laterally about a half-body width, or about 0.25 m, enough to
just clear the object along the linear path of motion. The most important number to
fall out of this analysis is the distance from the tangent of the circle to the potential
object of impact, 3.48 m.

Consider next reaction time. Let us assume that it takes 0.75 sec for the runner to
recognize the presence of the tree, yielding an additional 3.75 m traveled during the
interval. And finally, we cannot guarantee that the runner’s footfall will be appropriate
for turning. In particular, one cannot turn unless a foot is on the ground, and one
canmot usually turn well unless one is pivoting on the foot opposite the direction of
the turn. Given that a step cycle (two full strides) takes about 700 msec when running
at 5 m/sec (Carlsdd 1972; but for higher speeds, see Lee et al. 1982), an average of
350 msec must pass before the runner will be in a good position to initiate a turn in
a given direction. Assuming further that the footfall modulation time is independent
of the reaction time, an additional 1.75 m is traveled.

Thus, in order to veer 0.25 m (a half-body width) away from impending coilision
along a linear course of movement, a runner needs to be 8.98 m away from the
object, and arctan (0.25/8.98) = 1.6°, the maximum angle through which the runner
can correct the course of locomotion under the assumptions stated. Different estimates
of the runnet’s height and weight, of reaction time, and of running speed alter this
assessment little. Reworking the analyses for walking indicates a need of about 5to
10°.

. Consider first driving a car in two situations: (1) braking for a pedestrian or animal

and {2) swerving to avoid a stationary object while maintaining speed. Because vastly
different estimates can be obtained for different vehicular speeds, two will be con-
sidered: velocities of 13.2 and 26.4 m/sec (30 and 60 mph). All estimates are made
for conditions involving a dry road with good tires, allowing standard traction.

(1) Braking distances vary, but the Road Research Laboratory (1963, p. 378) suggested
that they can be fit by the function: D = 0.053%, where D is braking distance in feet
and v is the car’s velocity in miles per hour, Converting to metric units: I = 0.084%
At 26.4 m/sec, then, the braking distance is 58.5 m, but at 13.2 m/sec, it is only
14.6 m. The Laboratory (p. 350) reported that reaction times of 2.0 and 3.0 sec are
common under normal driving conditions at speeds of 30 and 60 mph; Probst et al.
(1984) gave somewhat lower values. If we use the lower value from the Road Research
Laboratory, the distances traveled before initiating braking are 52.8 m when driving
at 26.4 m/sec, and 26.4 m for 13.2 m/sec. Summing the distances traveled during
reaction time and braking yields distances of 111.3 m and 41.0 m for the faster and
slower speeds, respectively. If we consider the crucial width of concern to be one
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traffic lane wide, typically about 6 m, then the distance from the middle of the lane,
where the driver is traveling, to the outermost boundary of this path is about 3 m:
arctan(3/111.3) and arctan(3/41) equal 1.5° and 4.2°, respectively, for the two
velocities,

(2) Swerving assumes a curved path and, as with the runner, the curved path is
circular. If the car has a mass of 1000 kg and is traveling at a velocity of 26.4 m/sec,
then F, = 697,000 /r. For a speed of 13.2 m/sec, F, = 174,000 /r. Unlike the runner,
the car cannot lean. Instead, the driver must count on friction between tires and road
surface. The Road Research Laboratory estimated the coefficient of friction g, between
a good tire and a good road surface under dry-weather conditions to be about 0.80.
This means that the normal force sustainable without the car skidding sideways
during a turn is F, = umg, or F; = 7840 kg-m/sec?, Because F, must equal £, r =
89 m for the faster speed and r == 22 m for the slower. If the distance from the center
of the front bumper to safely clear an object is about 2 m, the forward distance
traveled during the swerve is 18.8 m and 9.2 m for two speeds, respectively. Add
to these the reaction-time-interval distances of 52.8 m and 26.4 m; then the summed
distance to correct the direction of motion so as to just miss the object is 71 m and
35.6 m: arctan(1/71) = 50 min of arc, and arctan{1/35.6) = 1.6 deg of arc.

Consider next pilots. The data estimating landing accuracy for a commercial aircraft
are given in Hasbrook (1975). A 3° glide slope is standard for approach. Assume
that the plane requires 4000 ft of contact with the runway during landing, that the
runway is 8000 ft Jong, that the pilot should land the plane at the 1000-ft mark from
the beginning of the runway, and that the current position of the plane is 2 miles
out at an altitude of 600 ft. A 3° approach will land the craft safely, a 2.35° glide
slope will run the plane off the end of the runway, and a 3.3° glide slope will land
the plane too short. Thus, ignoring the asymmetry around 3°, the pilot must be able
to judge the point of impact within 30 min of arc. Pilots of smaller planes need less
accuracy.

Finally, consider a downhill skier. If the skier’s mass is 70 kg (about 150 1b) and
the velocity is 13.5 m/sec (about 30 mph), a 45° lean into the hill generates a force
of 485 kg-m/sec? with a turn radius of 26.5 m, ignoring slippage across the snow.
If the coefficient of friction between the skis and snow is 0.1, the instantaneous radius
becomes 265 m, To avoid an obstacle (like a small rock), the skier would traverse
5 deg of arc along the circular path, or move forward about 23 m. If reaction time
is 1.0 sec, an additional 13.5 m will be traversed, yielding a total distance of 36.5 m;
and arctan{0.5/36.5) = 0.78°.

. For textbooks, see Ballard and Brown (1982), Bartley (1969), Brown and Deffenbacher

(1979), Bruce and Green (1985), Coren et al. {1984), Dember and Warm (1979),
Goldstein (1984), Haber and Hershenson (1973), Hochberg (1978b), Michaels and
Carello (1981), and Schiff (1980); and for articles of expository or technical content,
see Cutting (1981b), Cutting and Proffitt {1981), Hochberg and Smith (1955), and
Neisser (1977). :

. Regan and Beverley’s (1982) study had one important difference from the others. In

addition to forward linear movement, they introduced lateral motion in the display
that mimicked looking off to the side at an object. I call this simulated fixation, and
I use it in the experiments discussed in chapters 12 and 13. The merits of simulated
fixation are discussed at the end of chapter 12.

. See Murray (1967) and Carls&é (1972) for an analysis of lateral oscillations in gait.

I would argue, and later do, that these may actually help direction finding,

. Ahumada alse found that observers overestimated the aim point when trials ended

nearest the runway and underestimated it when they ended farther way. Such results
are consistent with night landing accidents.
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7. Warren coined the term egomotion for the sensation of moving through an envircnment.
Vection is another term for the same thing. I have used neither. “Vection” is arcane,
and “egomation,” I believe, is apt to confuse, because with Gibson (1954a) [ reserve
the term ““motion” for the change in position of objects and “movement” for the
change in position of an observer {or observer parts, as in eye movements). Thus |
suggest that the term “egomotion” is not needed, and that its extension, egomovement,
is redundant.

8. Neither Ahumada (unpublished) nor Riemersma (1981) claimed that their observers
used the focus of expansion for visual guidance.

9. The equations that determine the point of maximum magnlflcatlon rate are derived
as follows: Consider the gerneral case in which an observer is approaching a plane
at any angle. The optic angle # between the line of sight to any point on the plane
and the line of movement is

# = arctan{x sin 8/(D — x cos )],

where § is the angle of incidence between the line of movement and the plane, [
is the distance from the current location to the plane along the path of movement,
and x is the horizontal distance along the plane to the point under consideration. If
the observer moves forward,

49/4D = —xsin B/(D* — 2Dx cos B + ¥,

This equation yields the velocity function of all points on the plane with respect to
the fixed point along the path of movement. To obtain the function for magnifications,
we must take the second derivative with respect to x:

d*/dDdx = —sin 8-(2* — D} /(D? + 2Dx cos 8 + x*)°

The minima and the maximum of this function occur where the third derivative
is zero. But the point of maximum rate of magnification is not along the direction of
movement except when the approach to the plane is orthogonal (at 90°). Regan and
Beverley (1982) claimed that the point of maximum rate of change in magnification
lies at the point halfway between the point of impact and the point directly beneath
the observer at any one time. My formulatton differs from theirs, but they misspecify
their optics.

10. Notice that in the last equation in note 9 when g is 0°, or parallel to the plane, the
numerator goes to zero.

11. See, for example, Eriksson (1974b), Hay (1966), and Regan and Beverley (1979, 1982).

12. Following La Gournerie, many have noted problems of magnification in pictures,
among them Purdy (1960), Hochberg (1978a, 1978b), Lumsden (1980), and Rosinski
and Farber (1980). Also, there is a deeper confusion in the literature here than may
be apparent. We can talk about magnification measured on the projection plane and
speak correctly if that plane is orthogonal to the line of sight. But, as discussed in
earlier chapters, planar projections distort proper measurement; measures are to be
taken in the spherical coordinates of the optic array. Thus, although magnification
can occur on the projection plane (occurring when the direction of motion is directly
toward the center of an object), magnification does not occur where it counts—in
the optic array.

13. It is true that near-uniform magnifications occur when we approach objects that are
relatively distant from us. Noticeable distortions typically occur only when objects
are fairly close, presenting their largest projected face to be as much as 152, Because
most objects that we look at and that are important to us are considerably smaller
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than this, projective distortions resulting from approach or recession from an object
are probably not crucial. Much more serious, however, is the distortion resulting from
movement paths that are not directly toward objects under scrutiny, and it is always
the case that more objects lie off our path of movement than on it. For these objects,
planar projections of sutfaces distort, and magnification is not the rule.

Chapter 11  Multiple Representations of Optic Flow

—

oo

. In some regards, this analysis is an extension of the logic and discussions of Koenderink

and van Doorn (1976a, 1976b, 1981), Longuet-Higgins and Prazdny (1980), Prazdny
(1981a, 1983a, 1983b), and Regan and Beverley (1982); but most of what I present
is my own,

. Clocksin (1980}, Hasbrook (1975), Lee (1974), and Nakayama and Loomis (1974)

assumed automorphic mappings around the point extended out from the direction
of movement. Lee, unlike the others, used a set of cylindrical coordinates to map
flow. This has several advantages over a spherical system, but the choice of an identity
point on the cylinder must still be made.

" In spherical mappings there is always at least one fixed point, sometimes more.
Brouwer’s theorem (see Gellert et al. 1977) in topology states that if f is a continuous
mapping of an n-dimensional ball into itself, then f has a fixed point. Occlusions
keep most optic array mappings from being automorphic.

. Some caution must be exercised here. If the optic array is considered a complete

sphere, then by Brouwer’s theorem it must have at least one fixed point. If, on the
other hand, only the truncated section of an optic array projected to one eye is
considered, then it need not. Brouwer’s theorem holds only for a continuous closed
surface, not a bounded surface (such as the optic array clipped by brow ridges, eye
lashes, and lids),

. Harrington et al. (1980) and Harrington and Harrington (1981) studied blur patterns

as sources of information for directional guidance and looked for the efficacy of
divergence in flow, The focus of expansion would be the source of such divergence.
See also Whiteside and Samuel (1970).

. Lee and Lishman (1977) simply combined them and called the motion expropriospecific.
. Sinusoidal gratings are a standard psychephysical stimulus for the measurement of

visual sensitivity, They are called gratings because they look like fuzzy parallel bars.
They are sinusoidal in that the luminance profile follows a sine wave. One measure
of sinusoidal gratings is cycles per degree of visual angle.

Data were computed using the equations given in chapter 12. See also Gordon (1965). -

. Stoffregen (1985) reported that adjustments in stance resulting from optic flow are

made o motions that are everywhere below threshold for detection of single moving
points of light. Thus motion effects sum over large visual angles.

Chapter 12 Motion Parallax and Linear Movement
1.

See, for example, Eriksson (1974a), Gibson (1950), Gogel (1977), Gogel and Tietz
(1973), Graham (1951}, Hershberger and Urban (1970), Hershberger et al. (1974),
Hershberger and Starzec (1974), Johansson (1973a), Rogers and Graham (1979), and
Zegers {1948). Motion parallax was formalized by Gibson et al. (1955) and more
recently by Koenderink and van Doommn (1975, 1976a, 1981).

Motion parallax has not met with universal approval as a trustworthy source of
information in optic flow. The reasons for this are not entirely clear, Gibson et al.
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(1955, p. 373), for example, denied the general utility of motion parallax when looking
in the direction of movement. Their comment was terse and unmollified: “In short,
motion parallax does not occur. . . for objects ahead during forward locomotion.”
Strictly this is true, but conceptually this analysis has the same difficulty as Molyneux's
premise. Gibson (1976b) realized this flaw but apparently failed to note it in his
earlier statement about motion parallax: Although locking exactly in the direction of
movement yields no parallax, looking a degree or two off to the side does. Gibson
et al. (1955) went on to define and use concepts of motion perspective and focus of
expansion because of the difficulties they thought existed in motion parallax. Because
the older term, “‘motion parallax,” is perfectly descriptive of the situations I wish to
explore, I use it instead.

E. Gibson et al. {1959) also discussed ambiguity in moticn parallax. They distin-
guished two-velocity parallax from flow-velocity parallax, where the former concerns
the relative motion of two elements in the visual field and the latter concerns many
more, Their qualms were of relativity in motion, noting that two-element parallax
does not determine which element is moving against the other or whether both are
in motion. The differential motion parallax discussed here is more like the flow-
velocity concept and might be called three-velocity or three-element parallax, whete
an object is fixated and used as a fixed point against which the relative velocities of
other objects are compared,

Gordon (1965), citing Helmholtz's description of motion parallax, also suggested
that “safe conclusions” concerning real distance as a function of optic flow are not
so safe, In particular, he demonstrated that when the observer is undergoing curvilinear
transtation, Helmholtz's rule does not generally hold: Projections of more distant
objects do not necessarily move more slowly in the optic array then nearer ones. But
Gordon’s is not the only way to construe this situation. It terms of differentisl motion
parallax, the curved-path movement case does not present problems.

Finally, consider a terminological point. In note 8 of chapter 1 {and note 7 of chap-
ter 10) I said that, following Gibson (1954a), I would use the texrm motion for dis-
placement of objects in space and movement for observer displacement. In studies
of optic flow, several authors have discussed movement parallax (Eriksson 1974a,
Johansson 1973a) resulting from the observer’s movement through space, rather than
motion parallax, which might implicate the motions of objects. Because I discuss
parallax as it refers to retinal motions, I have decided to stick with the more traditional
term. Gibson (1954a, p. 305) also took this position: “The visual component of
stimulation [during locomotion] results from the fact of motion parallax, and consists
of differential motions of different parts of the image.”

. Von Kiies (1910, p. 372) deferred to Heimholtz when he closed out this passage:

Now these apparent motions are just as useful as those described by Helmholtz
for forming estimates of distance; and the probability is that both of them generally
contribute to the result in some way, although it would be hard to say exactly
how.

The point of chapters 10 through 13 is to show that one aspect of von Kries's analysis
relates to differential moation parallax and is much more helpful to direction finding
than Helmholtz's analysis (which is also Gibson’s) and that these effects can be
empirically separated.

In addition to my analysis, Rieger and Lawton (1983) in machine vision have found
differential parallax information more useful than other analyses for direction finding.

. Tuse the term shear for two reasons. First, its common usage implies rips or breakage.

As objects undergo motion parallax, their ordinal arrangement in the optic array

o o=

10.

11,

12

13,

14,
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often changes. Betweenness is then violated and the projected topology is broken.
Second, in affine geometry shear is the movement of one parallel line or plane of
affinity against another. This would change a square, for example, intc a parallelogram.
Gibson (1966) used the term in a different way.

The affine transformations here are similar to the analyses of pictures viewed from
the sides, shown in figure 3.1, but without perspective transformation.

. See, for example, Gibson (1950), Haber and Hershenson (1973), and Schiff (1980).
. Sedgwick (1983) discussed this type of coordinate system as “environment centered.”

Although I sympathize with this idea, the environment has no center. Marr’s object-
centered coordinates suffice,

Cutting (1981b), Cutting and Proffitt (1981), and Cutting et al, (1978) defined a center
of moment as that point within a coherent structure around which all other points
have simplest systematic reference, For a rolling wheel this point would be the axle,
but if lights are mounted asymmetrically on that wheel and the surround darkened,
the center of moment is typically seen as the centroid {center of gravity) of the
configuration of lights. For a human being walking, the center of moment is between
the shoulders and hips, those four points considered as the corners of a twisting flat
spring. The intersection of stress lines across that spring occur at the center of moment,
typically near the navel. From displays of a few lights mounted on joints (Johansson
1973b), viewers can tell the sex of a walker at greater-than-chance accuracy. The
information appears to be in the relative motions of the shoulders and hips, dictating
the center of moment for that individual. Other structures, such as trees and bushes,
also have nested centers of moment. These are similar to the singularities discussed
by Koenderink and van Doorn {1976b).

Lappin et al. (1980) and Petersik (1979) explored situations like this.

See also Gordon (1965) and Whiteside and Samuel (1970).

. Experiment 9 was first reported at the 4th Meeting of the International Society for

Ecological Psychology, Hartford, Connecticut, October 1982.

Optic density of the lines corresponded to the distance to each plane, but viewers
could not segregate planes until motion began.

Computation Hrme for each trial was about 15 sec, a period during which the participant
simply waited. Each trial presented a dynamic sequence by rapid successive presentation
of 50 static frames, much like a movie projection. These frames were presented at
47 msec each, for a sequence duration of 2.35 sec.

. If we consider x to be the initial distance from the station point to plane A {the plane

closest to the observer), y that to plane B, and z that to C, then the various conditions
are determined by ratios of these distances (where x/y = /2). Under condition 1
the planes were far apart, with both ratios equal to 0.63; under condition 2 they
were relatively closer, with ratios of 0.82; under condition 3 they were closer still,
with ratios of 0.91; and under condition 4 the distance degenerated such that all
twelve lines were on the same plane, x/y = y/z = 1.0.

F(2,6) = 6.8, p < 0.03, and F(4, 12} = 22,8, p < 0.0001, respectively, for the effects
of spacing and gaze-movement angle. When viewers were wrong in their judgments,
there was no systematic pattern of errors. That is, if the trial displayed the optics of
locking to the left, viewers were no more prone to make incorrect responses saying
that they were looking right than looking straight ahead. Moreover, viewers were
not systematically more correct for left- and right-looking trials than for straight-
ahead trials.

We might also conclude that the results of this experiment do not show that observers
can judge direction of gaze with respect to movement. Instead, they may show that
observers can learn to judge proximal flow on the display scope. On this view, the
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task was simply one of perceptual learning in which three classes of nonsense stimuli
were assigned three labels. There are four responses to this possibility,

First, the proximal stimuli on the display scope had complete correspondence,
through Alberti’s window, to the distal stimuli described. Except for binocular non-
disparities, surface information of the display face, and minor phosphor persistence,
these stimuli were optically identical with the distal stimuli simulated. Thus these
were not nonsense stimuli; they were accurate computer simulations.

Second, Regan and Beverley (1982) also used feedback. They found that observers
could not learn the location of a focus of expansion for orthogonal approach to a
single plane. Experiment 9 used feedback and found that observers could learn about
flow patterns that simulate parallax shifts, Even if proximal flow were all that was
being judged, the experiment demonstrates that flow corresponding to parallax motion
is learnable and that which corresponds to radial patterns from a focus of expansion
(without parallax) is not. Learnability constraints play an important role in theoretical
discussions of language acquisition (Wexler and Culicover 1981); they should play
no less a role in theoretical discussions of the acquisition of perceptual skills.

Third, all observers reported that the stimuli phenomenally rmimicked movement
through a twelve-line environment. Moreover, phenomenal imnpression of depth gen-
erally followed observers’ ability to make accurate judgments. Basically, I take the
verbal reports to mean two things: the simulations were successful in mimicking most
aspects of linear vection and the stimuli had the phenomenal appearance of objects
moving in depth.

Fourth, excluding the Regan and Beverley study with plastic deforming worlds,
only three experiments have shown accuracy of direction finding equal to that found
in experiment 9. All were conducted without feedback. Llewellyn (1971, experiment

9) demonstrated that observers, when given other visual information in the background, .

could alter that background; this observation is consistent with the idea that the
observers could make judgments of where they were going during linear movement
to within 37 min of are, This altered-background information was the drift of the
looming target against a stable aperture, a situation analogous to having a gunsight
or window frame through which to aim at a target. The motion of the target is nulled
by keeping it within the limits of a gunsight. This target/gunsight relative motion
is motion parallax. Riemersma (1981} and Ahumada (unpublished} also found a 1°
accuracy in aim-point estimation, but their viewers may have used the relative motions
in the stimulus against the edges of the screen, This too is motion parallax.

The important difference between the current study and these three is that their
observers needed a prosthetic referent (like a gunsight) with which to measure change
in the visual field. Without it, Llewellyn’s observers were an order of magnitude
waorse. In this experiment, on the other hand, objects in the array moved with respect
to one another; these objects were interreferential, and their differential parallax

specified the direction of movement of the observer. The case considered here is '

much more like the conditions under which we evolved—gunsights and window
frames are artifacts of recent vintage, but objects arrayed in depth have always been
with us. .

See Hochberg and Brooks (1978) for a discussion of moving camera techniques.
Historically, the effects of pans were rather momentous in film. The first were used
at the beginning of the twentieth century, and perhaps the first well-known pan
appeared in the Porter and Edison film “The Great Train Robbery,” released about
1903. This pan was only through about 45°, starting with a view of a train and

ending with a campsite. The effect apparently stunred the audience, creating dizziness

in many.
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Chapter 13 Motion Parallax and Curvilinear Movement

1. Analytically, this result also makes sense. If we convert coordinates between Eq.

{12.3) for linear movement and Eq. (13.2) for curvilinear moverment, x = Lcos g — r
and z = L sin 8. Once converted, the two equations differ only by a constant and a
scale factor. The scale factor is due to the size of r, as it affects the size of d, and
the constant —1.0 is due to the fact that when § is 45°, the value of da/df is —1.0,

2. Instantaneous acceleration functions for linear and curvilinear movement are generated
by the following equations, respectively:

a0 fdz? = 2xz/(x* + 2%,
da/dft = rLsin §-(L* — ) /(r* — 2rlcos B + L),

where z is the dimension of distance along the instantaneous path of linear motion,
x is the lateral displacement of the object from the path, r is the radius of the circle,
and L is the distance between the center of the circle and the object under scrutiny.
Angles # and a are the angles of gaze from the instantaneous path of motion and §
is the angle through which the path of motion has moved along the circular path.

3. For linear movernent, acceleration contours in three dimensions are generated simply
by rotating the two-dimensional contours around the z axis, accommodating left-
side/right-side differences (if they exist). For curvilinear movement, the three-
dimensional acceleration contours are much more complex and can be approximated
by imagining figure 13.3b as the projection in the xz plane, figure 13.3a as the yz
plane, and intermediate projections for rotations around the z axis. All such displays
and analyses are not needed here, But I would not say that acceleration information
is uninformative to the moving observer, only that instantaneous displacements may
be sufficient for wayfinding.

4. Experiments 10 and 11 were first reported, along with experiment 9 at the 25th
Annual Meeting of the Psychonomic Society, San Antonio, Texas, November 1984,
and at the 10th Annual Interdisciplinary Conference, Jackson, Wyoming, January
1985.

5. F(2, 6) = 9.52, p < 0.015, and F(5, 15) = 87.3, p < 0.0001, respectively, for effects
of spacing and final gaze-movement angle.

6. As before, there was a reliable mean effect of the size of initial gaze-movement angle,
F(5, 15) = 144.2, p < 0.0001; and a main effect of spacing, F(2, 6} = 23.4, p < 0.01.

Chapter 14 Direct and Indirect Perception

1. A certain amount of care is necessary when interpreting what seventeenth- and
eighteenth-century philosophers meant by the term perception. Locke did not really
distinguish it from thinking, and it was only with Reid (1764) that a distinction
between sensation and perception was made. Also, the term direct has appeared in
other similar contexts that I do not take the space to discuss, for example, in Condillac’s
(1780) discussion of direct sensation.

2. See Gibson (1966), Heider (1926), Natsoulas (1984), and Shepard (1984) for discussions
of resonance.

3. Michaels and Carello (1981) discussed other attributes of Gibsen’s direct perception,
but they conflate direct theory and ecological theory, a distinction that I would like
to maintain. Brunswik (1956), for example, presented an ecological indirect theory.

4. Early evidence on recovery from cataract operations, such as the Cheselden case
(Pastore 1971), appeared to support Locke’s and Molyneux’s view—shape was difficult
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for newly sighted people to comprehend. But more recent evidence (Gregory 1974)
suggests that this is not always the case.

. The idealist, or immaterialistic, aspect of Berkeley's theory is ignored here, Obviously,

if the world is simply a figment of one’s imagination, one would hardly be concerned
about being in direct contact with it through perception.

. Bailey (1855) was later quite careful in stating what he meant by perception, delimiting

it from conception.

. Even von Kries, in his first appendix to Helmholtz (1866), felt that Helmholtz's views

on the empirical theory were out of line and that certain physiological (innate} bases
were needed for all learning.

. Helmholtz (1878a, p. 381) later regretted the use of the term “unconscious inference”

because it was easily confused with a concept of Schopenhauer’s with the same
name, Southard’s translation of Helmholtz (1866) always uses the term “‘unconscious
conclusions.” Many, however, currently embrace the original term. Rock (1983, p.
272) is one:

By unconsious inference I mean that the process of arriving at the percept is one
much like reasoning in which conclusions are drawn from premises, except that
in perception the process is not conscious and the outcome is a percept rather
than a conclusion. I do nof argue as Helmholtz did that such a process is necessarily
a direct result of experience. That is a separate question.

Because Rock dismisses experience as a necessary input to percepton, his idea of
inference is little different than Gibson’s direct perception. Rock’s (1984, p. 234)
overall view is:

Although perception is autonomous with respect to such higher mental faculties

as are exhibited in conscious thought and in the use of conscious knowledge, I

would still argue that it is intelligent. By calling perception “intelligent,” T mean
to say that it is based upon such thoughtlike mental processes as description,
inference, and problem solving, although these processes are rapid-fire, uncon-
scious, and nonverbal.

Descriptions, for Rock, are abstract geometrical analyses, with which Gibson would
be comfortable. Inference is largely a red herring unless premises come from experience,
which Rock allowed but did not consider necessary. And problem solving is typically
demonstrated with impoverished picturelike stimuli, which Gibson thought were
always perceived indirectly. '

. Hoffman and Richards (1984) presented the clearest exposition I have seen of inferential

processes as they might work in perception. They conclude that a percept is never
guaranteed and can often be falsified. As they put it (p. 86): “This is not good news.”
I, on the other hand, think that no theory of perception can be both ineliminably
inductive and true.

See, for example, Gibson (1976a) and his discussion of Austin. The next strongest
candidate is Malcolm (1963), who wrote about direct perception while at Cornell.
Interpreting Gibson has taken on a Talmudic, hermeneutic air, to which I have done
more than my fair share of contributing (Cutting 1982b, 1985). Because of this state
of affairs, it becomes important to assess what others have said with regard to Gibson,
In the context of explicating direct theory, Reed (1983) concurred that nonmediation
and information specificity are the core concepts. Katz (1984) then raised the issue
of processing, to which Reed (1984) replied that Gibson said lots about processing.
Reed (1984) also raised the issue of awareness of external objects as central to Gibson's
theory, with “internal” awareness as incidental. '
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Chapter 15 Directed Perception

“1. Again, the one-to-one mapping that I discuss is #ot that between stimulus and percept.

Instead, it is only half the mapping, that between available information in the optic
array and the distal object in the environment, But, I would claim, the brunt of
Gibson’s {1959, p. 465) psychophysical hypothesis is close to what I present here as
the mapping function for direct perception:

The explicit hypothesis is that for every aspect or property of the phenomenal world
of an individual in contact with Ris environment; however subtle, there is a variable
of the energy flux at his receptors, however complex, with which the phenomenal
property would correspond if a psychophysical experiment could be performed.

By 1970, Gibson (Reed and Jones 1982, pp. 90-105) rejected at least two parts of
this description, one major and one minoer. The minor aspect is that he meant invariants
rather than variables, and the major one is the worry of behavioristic mapping of
stimuli onto responses. But notice that the quotation emphasizes the phenomenal
world of the individual ir contact with the world. Thus, if perception is occurring
and the individual is attending to the proper attributes of the optic array, then the
mapping from stimulus to percept is correct. The problem is that we cannot guarantee
that the information is picked up at any given point in time. The individual may not
yet have learned to differentiate it. Thus Gibson was forced to decouple the percept
as a necessary function of the stimulus. But he did not decouple the information in
the optic array from the real-world objects.

Curiously, he expressed rather strong reservations about mappings. In his last
statement on invariants, for example, Gibson {1979, p. 310} stated:

It would simplify matters if all these kinds of change in the optic array could
be understood as transformations in the sense of muappings, borrowing the term
from projective geometry and topology. The invariants under transformation
have been worked out. Moreover it is easy to visualize a form being transposed,
inverted, reversed, enlarged, reduced, or foreshortened by slant, and we can
imagine it being deformed in various ways. But, unhappily, some of these changes
cannot be understood as one-to-one mappings, either projective or topological.

This might appear to be damaging evidence against my assertion, but Gibson’s thoughts
on mappings are confined to projections and topology, not to logic. In his appendix
he refered to an earlier section (1979, p. 108} that makes this clearer:

Toreshortening or compression of texture preserves one-to-cne mapping only
until it reaches its limit, after which texture is lost. The emergence of new texture
with rupturing of a surface, the nullification of texture with dissipation of a
surface, and the substitution of new texture for old are still other cases of the
failure of one-to-one mapping, or projective correspondence. In all these cases
it is not the fact that each unit of the ambient array at one time goes into a
corresponding unit of the array at a later time.

The mappings discussed by Gibson are element-to-element matches across time slices
of the optic array. The foreshortening of a flat surface as it rotates and eventually
becomes parallel to the line of sight is indeed a case in which each element in the
optic array corresponding to a particular point on the surface becomes smaller and
eventually disappears. Thus over time many elements are lost. But the information
about the surface (perhaps cross ratios for its flatness) is in the array at all times until
the surface is aligned to the eye—and then the cross ratio disappears at exactly the
same moment that the textures on which it is computed can no longer be seen. It
seems to me that this is one-to-one mapping with a vengeance.
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2. See Cutting (1982b) for a critique of the concept of affordances, Also, although Gibson
claimed the concept to be new, the notions of grasp-ableness, pick-up-ableness, and

throw-ableness can be found in Tolman (1933) as part of his notion of sign gestalt. .

(%]

- The mapping shown in figure 15.1 could also be called many-to-many, but because
I am emphasizing the direction of the mapping process—from information to object
properties—I consider one source of information at a time. Many-to-rnany and one-
to-many mappings are equally illegitimate as functions,

4. Here, I may seem to be negating the idea of parallel computation in visual perception,
but I am not. Indirect perception, in my view, demands a parallel computation in
cognition—matching cues with their probabilistic referents in the world and using a
vast covariation matrix of cue-object relations. It is this to which 1 object. Parallel
computation in vision (see, for example, Ballard et al. 1983) seems not only necessary
but wonderfully efficient.

5. Barwise and Perry (1983) take a similar view to this in their situational semantics:
More information is present than is used. In their terms interpretation underdetermines
information.

6. Cooper (1983) has also expressed the necessity of multiple approaches to the same
problem, entailing multiple representations. My representations are external, hers
internal, but task specificity is inherent in both.

7. Rock (1984, p. 231) straddled the issue, acknowledging the import of information

but more heavily emphasizing cognition: '

My answer to Koffka's query—Why do things look as they do?—would be:

because of the cognitive operations performed on the information contained
within the stimulus.

8.In fact, we may have begun to worry that directed perception comes dangerously

close to an eclecticism that tries to please all, but in fact pleases none.
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Brown, T., 225, 229

Bruce, V., 279

Brunelleschi, F., 16, 17, 22, 34, 35, 260

Bruner, J., 226

Brunswik, E., 30, 41, 204, 244, 248, 285

Buffart, H., 254

Burke, R., 1

Burton, H., 26

Calvert, E., 152-153, 160-162, 174, 1786,
219, 245
Camera, 24, 165, 256-257, 265. See alse
Eye; Lens; Photography; Time
depth of focus, 15, 256-257
focal length, 260 i
head-mounted, 159 _
movie or television, 105, 159, 203, 284
obscura, 16, 18, 24, 256
pans, 203-204, 284 (see also Blur;
Fixation, simutated}
pinhole, 16-18, 256-257
Car. See Driving
Carel, W., 154--158
Carello, C., 67, 237, 262, 266, 267, 279,
285
Carey, 5., 255
Caricature, 34
Carlbom, 1., 257, 258
Carlsds, S., 278, 279
Carrier, 3., 32
Cartography, 19-20, 257
Cassirer, E., 64, 66-68, 255, 266
Causal theory of perception, 233-234.
See also Sense data
Cayley, A., 64

Center of moment, 190, 283
Center of outflow. See Focus of
expansion
Certainty rule, 145
Chen, L., 267
Cheselden case, 285. See alse Molyneux's
premise
Chiaroscuro, 33
Chisholm, R., 253
Chomsky, N., 255
Cinema, 23, 31, 38-40, 105-112, 261, See
alsg La Gournerie’s paradox
Clocksin, W., 256, 266, 281
Coding theory. See Structural information
theory
Cognitive impenetrability, 225
Cohen, R., 266
Collier, R., 258
Collinearity, 36, 80-84, 105, 110, 115,
118
Computation, 115, 149, 188, 250
etymology of, 249
parallel, 288
Computational algorithms, 129, 146
Computational approaches to vision;
12-13, 256-257
discrete points and displacements,
12-13, 146 (see alse Motion; Vector,
patterns in optic flow)
discrete points and views, 12, 146 (see
also Cross ratio)
displacement fields, 13, 147 (see also
Differential motion parallax)
Computational difficulty, 225, 244, 248,
249, See also Assumptions
Computational theory vs. algorithms,
146, 276
Condillac, E., 285
Constancy, 27, 52, 61-64, 71-75, 128,
255, 259, 266
Constraints
on curvature of physical space, 51
on differential motion parallax, 198-199
on fixed-point mapping, 175, 249 (see
also Brouwer’s theorem)
on imagery, 54
on information, xi-xii, 129, 244
on invariants, 267
learnability, 284
on optic array, 24, 253
on perception, 249-25(0, 253

Index 309

on range of cross ratios, 87
on theories of vision, 242
Constructivism, 33-34
Contracts, 32, 53, 56, 260, 263
Conventions
etymology of, 32, 260
in geometry, 51-56, 263, 265
in picture perception, 18, 31-32, 165,
260, 265
Convergence
of eyes {see Cue)
of parallel lines, 22, 24, 27, 32, 55, 134
(see also Perspective)
of rays, 35, 256
Cooper, L., 255, 262, 266, 288
Coordinate systern
Cartesian, 65, 193
choice of, 162, 215
cylindricai, 281
environmental, 189-190, 254, 283
retinal, 24
spherical, 171-178, 183, 192, 193, 209,
214-215, 219, 280
viewer-centered vs. object-centered,
190, 283
Coplanarity, 12, 94, 99, 105, 115, 129,
131-143, 157, 251, 271
Coren, 5., 279
Cornsweet, T., 33, 91
Cosmelogy, 3, 5
Cross ratio, xii, 62, 75, 77. See also
Collinearity; Coplanarity; Invariant
canonical, 80-81, 85-87
case 1, 91, 92, 94, 97-103 (see also
Density}
case 2, 92, 94, 103-105
case 3, 93, 94, 131-138
case 4, 93, 94, 138-142
changes with displacement, 86, 88, 117
vs. flow vectors, 131-147
hypothesis, defined, 91
limitations, 115-116
noncanonical, 87-89
proof of invariance, 81-85, 272
range, 87
vs. relational cues, 97-114
Cue, xii, 33, 40-43, 61, 165, 225, 231,
251, 261-262, 288, See also
Perspective; Stereopsis; Surrogate
accommodation, 37, 257, 259, 262
vs. clue, 262
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Cue {cont.)
convergence, 37, 237, 262
density, 283 (see also Density; Gradient)
etymology of, 40, 261-262
height in plane, 16, 41, 217, 258
horizon ratio, 42
nonrelational, 91, 131, 142, 276
occlusion, 17, 26, 57, 60, 154, 175, 186,
192, 217
size, 156, 199, 217
value, xiii, 41, 244, 251, 288
Culicover, P., 284
Curl, 173-174, See also Focus of
expansion; Vector, patterns in optic
flow
Cutting, J., 164, 189, 246, 253, 254, 255,
262, 264, 266, 267, 279, 283, 286, 288

Daguerre, L., 16
Daniels, N., 49, 263, 264
Davis, P., 255, 263, 264
Decoding principles, 57, 143, 145-147,
277
automaticity of, 145, 147
Decompesition, 226, 237
Deduction. See Inference
Deffenbacher, K., 278
Dember, W., 279
Democritus, 256
Density
and continuity, 118, 126
and continuous variation, 118, 126
and cross ratios, 116-123, 127, 129,
131, 142, 241, 245, 273, 274
and dimensionality, 118, 126
gradient, 73, 246, 283
indexes, 118-121, 236, 273
and invariance, 118, 128
as information vs. algorithm, 129
and perception, 123-127, 274, 275
and points, 118, 128
of points on surfaces, 128-129
Descartes, R., 5, 16, 47-48, 56, 228-229,
262, 265
de Swart, J., 253
Dewey, J., 56
de Wit, H., 253
Differential motion parallax. See also
Motion parallax
defined, 190-192
during walking, 209, 214

as an invariant, 219
measured, 192-195
necessary conditions for, 195198
rotation in, 188-189
sufficiency but nonnecessity, 217
Diffraction, 17, 255, 256
Dioptics, 15, 27, 256-259. See also Optics
Directed perception, xiii, 241-252,
287288
Direction finding. See Wayfinding,
accuracy
Direct perception, xiii, 7, 70, 72-73, 147,
© 223-239, 242-243, 246-251, 285-287
Direct sensation, 285
Displacement. See alse Cue; Cross Ratio;
Group theory; Isoangular displacement
contours
effect on cross ratio, 85~89
hypothesis, defined, 91
instantaneous, 13-14, 132, 146, 171,
186, 210
normal, 35-36
ordered pattern of, 140-147, 205, 241,
245 (see also Motion parallax)
parallel, 35-37
vectors of, 13, 132-133, 169, 174, 180,
193, 195
Distal information, 133. See also Proximal
information
Distal layout, 15
Distal object or stimulus, 18, 41, 62, 75,
225, 235, 242, 265, 266, 273, 284, 287.
See also Proximal stimulus and image
Distal properties, 128
Distal senses, 236. See also Proximal
Senses
Distance index, 118-120, 122, See also
Density
Distortions, xii. See also Transformation
in graphics, 21-23
in mapmaking, 19-21, 257
on movie screens, 38-40, 107-108 (see
also Isodeformation contours)
in optics, 27
in pictures, 18-19 (see also
Anamorphosis)
on television screens, 112-113
Donatello, 16
Dretske, F,, 7, 252, 254
Driving, 152, 158, 217, 278-279
Duccio di Buoninsegna, 16
Dunn, B, 45

Eckoff, W., 48
Ecological. See Direct perception; Optics
Ecology, biological vs. social, 204
Edgerton, S., 16, 34, 42, 257, 259
Edwrards, D., 253
Egomotion, 149, 280
Einstein, A., 51, 54, 261
Elliott, H,, 37, 39
Empiricism
in geometry, 50-54, 263, 264
in psychology and philesophy, 6, 50,
67-70, 231-232, 243, 286
Engel, E., 264
Epicurean schoot, 47
Epistemology, 3, 5-6, 61, 79, 254
Epstein, W., 47, 225, 254, 266, 267
Eriksson, E., 280, 281, 282
Erlangen program, 65
Eudlid, 11, 25-30, 34-35, 41, 42, 48, 55,
57, 63, 185, 255, 256, 257, 259. See
also Geometry
Euclid’s Elements, 46, 49
Eudlid’s Optics, 25-30, 47
Expansion. Se¢ Focus of expansion;
Magnification
Exponential index, 121-122, 124-128,
275. See also Density
Extension. See Space
Exterospecific, See Motion
Extromission theory, 259
Eye. See also Acuity; Fixation; Fovea;
Lens; Movement; Optics; Parafovea;
Periphery of visual field; Pupil; Retina
and camera analogy, 15-18, 256
Eye height, 27, 34, 42, 103, 131-139,
142, 146, 176, 258, 275-276
defined, 131
hypothesis, 135

Farber, J., 261, 280
Fechner, G., 253
Fidelity, 23, 260
Film, 15, 33, 158, 175, 203-204, 272,
284, See also Cinema
perception of, 97, 105, 108, 111-113
(see also La Gournerie’s paradox)
Fisher, 1., 257
Fixation, 160-163, 168, 175-199, 202,
207, 215~219, 265, 282
simulated, 203-204, 211, 279
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Fixed point, 152, 159-162, 169-175, 246,
281, 282. See also Brouwer's theorem;
Focus of expansion

Fixed radius index, 120-122. See also
Density

Flanner, J., 260

Flinchbaugh, B., 255, 264

Flock, H., 267

Flow. See Motion

Focus of contraction, 154, 160, 171

Focus of expansion, 151-163, 167-184,
214-215, 217, 219, 251, 267, 280-282,
284. See also Assumptions

retinal vs. optic, 162

Fedor, ]., 225, 226, 253, 254

Foley, J., 59

Footfall modulation, 152, 278

Foreshortening ratio, 21, 38

Form, 4

Fovea, 159, 181, 198

Freeman, R., 266

Frege, G., 50, 51

Frick, E., 8

Friction, coefficient of, 279

Fry, E. 31

Fry, G., 264

Fuller, B., 257

Fuqua, M., 115, 256

Galen, 259
Galileo, 63
Garner, W., 9, 254, 255
Gauss, C., 49-51
Gaussian approximation, 257, 259. See
also Lens
Gaze-movement angle, 199-204,
212-214, 283, 285
defined, 201
Geach, P., 47
Gehringer, W,, 264
Gellert, W, 81, 281
Geometry
affine, 283
definition of, 65 (see also Erlangen
program})
Euclidean, 4953, 57, 59-60, 65, 114,
188, 255, 263-265
foundations of, 48, 49, 54, 255
and information, 4, 13, 225
and intuition, 50-51
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Geometry (cont.)
Lobachevskian, 49, 58, 59, 264
and mechanics, 49-52
metrical, 77, 79
natural, 47-48, 51, 56, 57, 262, 265
non-Euclidean, 45-60, 263-265
of optic array, 15, 23
and optics, 25-26
and perception, 1, 4, 5, 46-54, 66-70,
228-229, 265
perspective, 30
planar, 18, 25
projective, 34, 57, 60, 62, 77, 79-80, 91,
95, 113, 131, 143, 250, 277, 287
projective, and light, 79
reconstruction of pictorial space, 35-36,
260261
Riemannian, 52, 264
spherical, 18, 23, 25, 165
synthetic and a priori, 48
of visual space, 57-60
Gestalt. See alsc Arnheim; Koffka
psychology, 62, 70, 260
sign, 288
Gibson, E., 71, 80, 230, 235-237, 282
Gibson, J., 4, 5, 23, 29, 30, 32, 33, 40,
41, 42, 57, 58, 60-63, 68-74, 79,
142-146, 152-155, 157, 159, 160, 163,
169, 170, 172, 174-176, 178, 183, 203,
204, 214, 215, 217, 219, 225, 226, 230,
232, 234, 235, 237, 238, 242-245, 248,
249, 252, 253, 254, 256, 257, 259, 260,
264, 266, 267, 280-283, 285-288
Giotto di Bondone, 16
Glide paths. Se¢ Aircraft landing
Gogel, W., 281
Goldstein, B., 261, 267, 279
Gombrich, E., 33, 260
Goodman, N., 32
Gorden, D., 281-283
Gradient, 159, 253, 260
acuity, 180, 204
compression, 27, 246
defined, 73
density, 73, 246, 283
vs. invariants, 69, 73-74
perspective, 246
Graham, C., 185, 281
Graham, M., 281
Grant, E., 259
Graphics. See Distortions; Projection

" Green, V., 279

Greene, R, 37, 261
Gregory, R., 11, 261, 286
Grosseteste, R., 259
Grosslight, J., 258
Ground theory of perception, 154
Group theory. See also Invariance;
Invariant; Transformation
Abelian groups, 65
continuous, 68
displacements, 65
and perception, 64-65, 70, 255
postulates of, 65
transformations, 64-67
trivialization in application, 66-67
Griinbaum, A., 58, 264
Gulick, W., 258
Gyroscope, 177-178. See also Optokinetic
nystagmus

Haber, R., 29, 34, 39, 253, 256, 279, 283

Hacker, M., 272

Hagen, M., 37, 39, 260, 261

Hallucination, 7

Halwes, T., 260

Hamilton, W., 229-230, 265

Hamlyn, D., 253

Hansen, R., 265

Hardy, L., 264

Harper, R., 261

Harrington, M., 281

Harrington, T., 281

Hasbrook, A., 158, 176, 205, 279, 281

Hatada, T., 156

Hatfield, G., 254

Hay, J., 273, 280

Hayek, F., 265

Hecht, E., 29

Hegel, G., 233

Heider, F., 70, 226, 251, 266, 285

Heil, J., 253, 254

Helicloris of Larissa, 259

Helmholtz, H., 15, 25, 33, 36, 50-53,
58-60, 62, 66, 70, 169, 178, 185,
223-225, 230-233, 235238, 251, 260,
263, 265, 282, 286

Hempel, C., 46, 263

Heraclitus, 61

Herbart, J., 63

Hersh, R., 255, 263, 264

Hershberger, W., 281

Hershenson, M., 279, 283
Hildreth, E.,, 256
Hillebrand, F., 58
Historical approaches
to direct and indirect perception,
223-239
to space, perception, and geometry,
45-55
Hobbes, T., 230
Hochberg, 1., 21, 33, 39, 68, 165, 203,
224, 235, 252, 254, 260, 266, 267, 272,
279, 280, 284
Hoffman, D,, 224, 255, 264, 286
Hopkins, J., 264
Herizon, 27-28, 34, 41, 42, 73, 131, 132,
174-177, 182-183, 199, 258, 262, 263
Horizon-line isocephaly, 42
Horizon ratio, 42
Horn, B., 256
Horopter, 58, 264
Hudson, P., 253
Hume, D., 52, 230, 233, 263
Hypothesis
for pickup of cross ratios, 89-91
for pickup of flow vectors, 135
for pickup of Weber fractions of motion,
101

Icon, 256
Idealism, 286
Identity point, 174-175, 177. See also
Fixed point; Focus of expansion
Hlumination, 29-30, 129
Nlusion, 7, 9, 261
Ames room, 55-56
argument from, 233
Craik-O’Brien, 33
and curved geometries, 59
Kopfermann cube, 21
moon, 262-263
Necker cube, 22
trapezoidal window, 56-57
windmill, 55-56, 264
Imagination, 51, 54
Immediate perception. See Direct
perception; Mediation
Impenetrability. See Space
Impoverished stimuli, xi, 40, 137, 203,
238, 247-248, 252
Indirect digestion, 236
Indirect perception, xiii, 7, 147, 223-239,
243-251, 285-287
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Indirect repiration, 236
Indow, T., 114, 264
Induction. See Inference
inference
in legic, deduction and induction,
232-233, 246-247
in perception, 40-41, 144, 147,
223-229, 231-239, 242, 286
premises determining direct and indirect
perception, 232, 238, 239
unconscious, 37, 47, 62, 143, 231-232,
286
Information, xi-xiii, 3—14. See glso
Constraints; Cue; Invariance; Invariant;
Mapping; Structural information
theory; Structure
availability, 250
contexts for, 247-248
correct and incorrect, 9
and distance, 11
and energy, 30
equivalent sources of, 266-267
fuzzy sets, 10
in geometric structure, 5, 10-14
hunt for, 144-145
insufficiency, 226 (see also Indirect
perception)
intermittent use of, 250-251
and invariance, 61-75
in mathematics, xi
multiple sources of, 241, 245-246, 250
objective and public, 7
in optics, 15-30
origin of, 5
overspecification of perception by, 247
pickup, 5
in pictures, 31-43
processing, xi, 225, 233, 248-249, 268
proximal, 41, 133, 225
quality of, 251
scaled to viewer, 30
in sense data, 6-8 .
in sets, 8-10
and simplicity, 254
specification in perception by, xii, 4, 41,
131-133, 189193, 236, 247
sufficiency, 226 (see aiso Direct
perception; Directed perception)
theory, 8-10
trustworthiness of, 8, 41 (see also Cue,
value)
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Information (cont.)
uncertainty, 9
underspecification of perception by, 84,
247
and visual angles, 11
Interposition. See Cue
Intromission theory, 259
Intuition, 50-51, 263
in perception, 230--231
Invariance, 61-75 passim, 218-219,
265-267. See also Differential motion
parallax; Group theory; Invariant;
Mapping; Transformation
in algebra, 64-65
Boring’s discussion of, 6263
Cassirer’s discussion of, 64, 66, 68-69
vs. constancy, 62, 75, 266
Helmholtz's discussion of, 62, 266
Koffka’s discussion of, 62
Invariant, xii, 61-75 passim, 218-219,
265-267. See also Cross ratio;
Invariance; Variant
choice of, 142146, 219-220
definition of, 75
vs. gradient, 73-74
higher-order, 237
as an inequality, 75, 191, 219
multiple, xii—xiii, 72-74, 143~146,
219-220, 223, 266-267 (see also
Decoding principles)
as one-to-one mapping, 72-73, 266
overgeneralization of, 67-68, 70
perceptual, xii, 75, 142 (see also Cross
ratio; Differential motion parallax)
and projective geometry, 77, 79-80, 277
(see alse Cross ratic)
vs. property, 70-71, 74
as a real number, 75
topological, 175, 219, 267
transformational and structural, 67-68,
266
Irresistibility in perception, 229, 230
Isoangular acceleration contours,
210-211
Isoangular displacement contours,
193-155, 209-210
Iso-cross-ratio-change contours, 113. See
also Television
Isodeformation contours, 38-40,
112-113. See alse Cinema
Ittelson, W., 264

Jackendoff, R., 255
James, W., 261-262
Johansson, G., 57, 60, 77, 79, 143, 145,
146, 252, 255, 256, 277, 281-283
Johnson, C., 181
Johnston, 1., 156, 217
Jones, R., 261, 287
Jowett, B., 45
Judgment
natural, 262-263
in perception, 224, 226-22§, 231
Julesz, B., 266, 275
Justification of belief, 6-9, 11

Kanade, T., 272
Kant, I, 47-52, 58, 228
Kanwisher, N., 267
Katz, D., 266
Katz, S., 286
Kaufman, L., 157, 217
Kender, J., 272
Kennedy, ., 260
Kenyon, F., 264
Kepler, 1., 5, 16, 17, 47, 57, 256, 259
Kimball, O., 256
Klein, F., 65-66, 266
Kline, M., 49, 51, 54, 263
Knowledge, 40, 57, 233-234. See glso
Epistemology
“going beyond the information given,”
226 )
in perception, 43, 230 (see alse Indirect
perception)
“taking into account,” 223, 226, 248
Koenderink, ., 133, 178, 256, 266, 281,
283
Koffka, K., 4, 21, 61-62, 70, 73, 241,
242, 247, 249, 288
Kolers, P., 249
Koyré, A, 219
Kries, ]. von, 185-186, 282, 286
Krumhansl, C., 117, 266
Kubovy, M., 35, 37, 261
Kuhn, T., 219

]

La Gournerie, ], de, 35, 280
La Gournerie’s paradox, 34-40, 97, 105,
108-111, 113, 114, 261, 283
defined, 35
in dynamic displays, 39-40
in static displays, 37-39

Lambert projection, 20, 257
Landing. See Atircraft landing
Langewiesche, W., 158, 205
Lappin, J., 115, 256, 267, 283
Lawson, R., 258
Lawton, D., 256, 283
Learnability, 284
Learning
in perception, 5, 224, 226228,
231-232, 235-236, 284
in picture perception, 33-34
Lee, D, 133, 155, 169, 266, 278, 281
Leeman, F., 257
Leeuwenberg, E., 254
Leibowitz, H., 181-182
Lens, 15-18, 24, 168, 256-257, 259-260,
273. See aiso Camera; Magnification;
Photography
fish eye, 156, 265
telephoto or zoom, 36-37, 165, 261
Leonardo da Vinci, 15, 16, 18, 30, 38, 47,
171, 264
Leonardo’s window, 23, 41, 171
Leonardo’s windshield, 171-172
levine, N., 267
Lewin, K., 30
Lie, 5., 65
Light ray, 11, 17, 19, 57, 131, 225. See
also Line of sight; Optics; Projection
bent, 255
centric, 22, 35, 258-259
direction of, 259
length of, 55 (see also Molyneux's
premise)
Lindberg, D., 259
Lindsay, P., 265
Line of sight, 11, 18, 25, 28, 35, 41, 118,
133-134, 138, 160, 167, 171, 194-195,
201, 210, 218, 234, 259, 269, 273, 276,
280, 287. See also Plane of sight
Lishman, R., 281
Llewellyn, K., 155-157, 162, 167,
216-217, 284
Lloyd, B., 255
Lobachevski, N., 52, 263. See also
Geometry
Locke, J., 224-231, 235, 236, 238, 254,
285
Locomotion. See Movement
Loftus, G., 256
Longuet-Higgins, C., 133, 178-180, 256,
266, 281
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Loomis, ], 266, 281
Lotze, H., 50, 262

Luce, D., 266

Luchins, A., 266
Luchins, E., 266
Lumsden, E., 261, 280
Luneburg, R., 58-59, 264

McAlister, E., 21, 254
McArthur, D,, 225
Mach, E,, 52
Magnification, 162-168, 185-186, 214,
216, 280-281. See also Focus of
expansion; Lens
Malcolm, N,, 286
Malde, H., 265
Malebranche, N., 262-263
Mapmaking, 19-21, 257
Mapping. See also Brouwer’s theorem;
Mapmaking; Psychophysical
hypothesis
automorphic, 175, 281
bijectional, 243
coordinates for, 174
and Gibson, 266, 287
information-to-object, xii, 4, 17, 41,
74-75, 133, 235, 242-247, 287 (see
also Probability; Cue)
and invariance, 72-73
many-to-many, 244, 248
many-to-one, 72, 245-246
non-structure-preserving, 62, 244
one-to-many, 243-244 (see also Cue)
one-to-one, 41, 72-73, 242-243, 266,
287 ‘
optic flow, 169-184
and perception, 4
projection surface to object, 17, 19, 171,
257
proximal-distal, xii (see also Information)
and representation, 72-73
Marr, D., 146, 190, 252, 257, 265, 283
Massachio, 16
Mathematics. See also Algebra;
Geometry; Group theory; Topology;
Trigonometry
Galileo's mathesis universalis, 63
modeling, xi, 59-60, 64
and nature, 47
and perception, 5, 29, 63-64
in perception, 64-68
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Maull, N., 47, 262
Mayzner, M,, 117
Meaning, 252
Mediation, 224-228, 230, 231, 235,
237-238
Medin, D., 255
Medium, 225-226, 236, 255
Meister, R., 38-40, 112-113
Mercator projection, 19-20, 257
Metaphysics, 3, 5, 13, 230, 253, 254
Michaels, C., 67, 237, 262, 266, 267, 279,
285
Miles, W., 55, 264
Mill, J. 8., 34, 52, 223-225, 229-233,
236-238, 255, 261-263, 265
Millard, R., 246, 267
Miller, G., 32
Miller, Q., 257
Mirages, 255
Mirrors, 16, 34-35, 235, 260
Modularity of mind, 225
Molyneux, W., 55~56, 228, 256, 258,
285, 301
Molyneux’s premise, 55, 231, 282
Molyneux's problem, 226, 285
Moore, G., 7, 233, 254
Motion, See also Movement
expropriospecific, 281
exterspecific, 149
induced, 28
lamellar, 178-179
vs. movement, 8, 254
perspective, 27-28, 282
primary vs, secondary, 89, 94
propriospecific, 178
restricted vs, unrestricted, 12, 255-256
retinal, 159, 167, 175-183, 214, 254,
282
sensitivity function, 180-183
shearing through plane of sight, 188,
282-283 (see also Differential motion
parallax)
solencidal, 178-179
structure through, 12-13
Motion parallax, xii, 13, 28, 29, 135, 139,
140, 151, 158, 162, 167-170, 184-220,
236, 241, 246, 251, 281-282, 284-285.
See glso Differential motion parallax
Euclid on, 28
Gibson on, 281-282
Helmholtz on, 168

von Kries on, 185-186
Movement. See also Gaze-movement
angle; Motion
curvilinear, 207-220
eye, 24, 95, 154, 162, 176, 178, 204,
218 {see also Optokinetic nystagmus)
linear, 185-205
vs. motion, 8, 254
observer, 185-220, 254
Movies, See Cinema
Murdock, B., 273
Murray, M., 279

Naimark, M., 257
Nakayama, K., 266, 281
Natsoulas, T., 285

Neisser, U., 71-72, 243, 277
Niepce, ., 16

Norman, D., 265

Norman, J., 224, 235
Nyquist limit, 258

Occlusion, See Cue
Ocular-drift cancellation, 162, 167, 216,
See alsc Optokinetic nystagmus
Ontology, 3—4
Opacity, 57
Optic array. See also Assumptions;
Mapping; Motion
defined, 23-24
units of, 24-25 )
Optic flow, xii, 132-220 passim
asymmetries of, 180-183, 215-216
Optics
classical, 25-28, 253
ecological, 28-30, 71
geomettic, 11, 29
physiological, 29
Optokinetic nystagmus, 178, 217-218

Paciorek, ]., 257, 258

Paivio, A., 255

Palmer, 5., 72, 255, 266

Panofsky, E., 32, 265

Pappus, 143

Parafovea, 152, 181, 265

Parafoveal streamer theory, 152, 156. See
also Focus of expansion

Parallel projection. See Projection

Park, ]., 266

Parmenides, 61

Pastore, N., 55, 228, 231, 262, 285
Pecham, J., 28, 259
Perception
fundamental problem of, 61, 265-266
ideas in, 226, 230
as measurement, 267
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272. See also Iso-cross-ratio-change
contours; La Gournerie’s paradox

Tertium quid, 224-225, 230

Thomas, T., 65

Thresholds

acuity, 181-182 :

for cross ratios changes, 99, 105, 110,
112

Euclid on, 26-27

Gibson on, 144

for invariant detection, 69

for motion detection, 182-183, 281
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Vestibulo-ocular system, See Gyroscope;
Optokinetic nystagmus
Viewpoint. See La Gournerie’s paradox;
Projection, polar; Station point
Visual angle, measured, 24-25
Visual cone, 27, 259
Visual pyramid, 21, 25, 29, 34, 214, 256,
257-259

Wald, G., 15

Walk, R., 230, 235-236
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