Eight open questions in the computational modeling of higher sensory cortex
Daniel LK Yamins and James J DiCarlo

Propelled by advances in biologically inspired computer vision and artificial intelligence, the past five years have seen significant progress in using deep neural networks to model response patterns of neurons in visual cortex. In this paper, we briefly review this progress and then discuss eight key ‘open questions’ that we believe will drive research in computational models of sensory systems over the next five years, both in visual cortex and beyond.

Address
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Corresponding author: Yamins, Daniel LK (yamins@mit.edu)

Current Opinion in Neurobiology 2016, 37:114–120
This review comes from a themed issue on Neurobiology of cognitive behavior
Edited by Alla Karpova and Roozbeh Kiani
For a complete overview see the Issue and the Editorial
Available online 26th February 2016
http://dx.doi.org/10.1016/j.conb.2016.02.001
0959-4388/© 2016 Elsevier Ltd. All rights reserved.

Any scientific development of long-term value opens up as many new questions as it answers. This is certainly the case with recent progress in building deep neural network models of visual cortex. In this piece, our goal is to briefly describe these recent advances, and to outline what we consider to be the most interesting open problems in cortical modeling, both in vision and beyond. We focus is on questions that will require both cutting-edge algorithmic developments as well as next-generation neuroscience and cognitive science experiments.

Brief review of recent progress
Starting with the seminal work of Hubel and Wiesel, work in visual systems neuroscience over the past 60 years has shown that the ventral visual stream generates invariant object recognition behavior via a hierarchically-organized series of cortical areas that encode object properties with increasing selectivity and tolerance [1*,2–5]. Early visual areas, such as V1 cortex, capture low-level features such as edges and center-surround patterns [6*,7]. In contrast, neural population responses in the highest ventral visual areas, inferior temporal (IT) cortex, can be used to decode object category, robust to significant variations present in natural images [8–10]. The featural content of mid-level visual areas such as V2, V3, and V4 is less well understood, but these areas appear to contain intermediate computations between simple edges and complex objects, along a pipeline of increasing receptive field sizes [1*,11–18].

Many of these observations can be captured mathematically via class of computational architectures known as Hierarchical Convolutional Neural Networks (HCNNs), a generalization of Hubel and Wiesel’s simple and complex cells that has been developed over the past 30 years [19*,20*]. HCNN models are composed of several retinotopic layers combined in series. Each layer is very simple, but together they produce a deep, complex transformation of the input data—in theory, like the transformation produced in the ventral stream. However, mapping a single HCNN model to ventral stream neural data has proven extremely challenging [12], in part because subtle parameter changes (e.g. number of layers, local receptive field sizes, &c) can dramatically affect a model’s match to neural data [21,22]. Recent work in visual cortex seeks to go beyond this powerful but broad-stroke understanding to identify concrete predictive models of ventral cortex, and then use these models to gain insight inaccessible without large-scale computational precision.

A key aspect of this approach has been performance-based optimization, in which the parameters of a large multi-layer neural networks are chosen to optimize the networks’ performance on a high-level, ecologically valid visual task [23*]. Leveraging computer vision and machine learning techniques, together with large amounts of real-world labelled images used as supervised training data [24**,25,26*], HCNNs have been produced that achieve near-human-level performance on challenging object categorization tasks [27].

Intriguingly, even though these networks are not directly optimized to fit neural data, their top hidden layers are nonetheless highly predictive of single-site neural responses as well population-level representations in IT cortex both in electrophysiological [23*,28], and fMRI data [29*,30]. Specifically, model units from the highest hidden layers of these performance-optimized HCNN can be linearly combined to produce synthetic ‘neurons’ that predict the image-by-image response patterns of sites in IT cortex. Moreover, the population of these synthetic neurons closely matches the representational dissimilarity...
matrices (RDMs, [31]) of the macaque and human IT populations. These deep, performance-optimized neural networks have thus yielded the first quantitatively accurate, predictive model of the IT population response.

Moreover, high-throughput computational experiments evaluating thousands of HCNN models on both task performance and neural-predictivity metrics, have found a strong correlation between performance of high-level object recognition tasks and ability to explain IT cortical spiking data [23*]. The predictive power of these models is driven not just by categorization performance alone, as ideal observer models with perfect access to object identity do not themselves predict IT neural response patterns nearly as well as the hierarchical neural network units [23*].

Critically, these HCNN models are mappable not only to IT, but also to other levels of the ventral visual stream. Lower model layer filter weights resemble Gabor wavelets and are effective models of fMRI voxel responses in V1 voxel data [29*,30]. Along the same lines, intermediate HCNN layers are predictive of neural responses in V4 cortex [23*]. In other words: combining two general biological constraints—the behavioral constraint of recognition performance, and the architectural constraint imposed by the HCNN model class—leads to greatly improved models of multiple layers of the visual sensory cascade. An additional benefit of this approach is that each layer of the HCNN is a basis set for its corresponding cortical area, from which large numbers of IT-, V4- or V1-like units can be generated. A common assumption in visual neuroscience is that understanding the qualitative structure of tuning curves in lower cortical areas (e.g. gabor conjunctions in V2 or curvature in V4 [32]) is a necessary precursor to explaining higher visual cortex. These recent results show that higher-level constraints can yield quantitative models even when bottom-up primitives have not yet been identified.

The mapping between neural networks and cortical neural responses is still far from perfect. However, these recent results are encouraging, and they advance the understanding of the ventral stream in at least two new ways. First, the predictive accuracy of these models suggests that the principles of cortical processing may be best described at the level of architectural statistics (rather than precise wiring patterns), learning rules (rather than descriptors of tuning curves), and ethological task goals (rather than information transmission). Second, because models derived from this approach are both accurately predictive and generative, they act as hypothesis generators that can be richly interrogated to explore key open questions and enable the rational design of neuroscience experiments to answer those questions. Below we list eight exciting open questions that are now approachable from this new vantage point.

Why is IT cortex heterogenous at large spatial scales?

IT cortex is not a single monolithic computational mass in which output features are randomly intermixed across the cortical surface, but instead is likely to contain multiple retinotopic areas, with posterior IT, central IT, and anterior IT areas performing potentially different computations [1*]. It is also now known that specialized face, place, and color-prefering regions at the multiple-millimeter scale are found in each of these IT areas [33–36]. Are these the only regions? If so, why these and not others? How do the regions arise in the first place? Understanding this heterogeneity with computational models has two components: first, identifying whether and how the observed distributions of unit selectivities arise, independently of their spatial clustering; and second, explaining the observed spatial clustering.

Existing HCNN models could likely be used to generate detailed predictions about the unit distributions. A basic question is: to what extent are the existence of apparently specialized populations of units (e.g. face-selective units) strongly dependent on the semantic content of the training data of the neural networks? Will standard neural network model approaches yield observed unit populations if trained on datasets with a mix of semantic content close to that experienced by humans during development (e.g. a large fraction of faces)? How sensitive are unit selectivity distributions to this semantic content?

The second question, about spatial clustering, will require a more substantial extension of the HCNN framework, since those models make no specific predictions about how their units are to be mapped to the two-dimensional cortical sheet. It is possible that using a simple self-organizing map approach [37] to cluster in space units with similar feature tunings would explain a large fraction of the spatial structure in IT. However, there is some evidence that clustering may not be along purely geometric or featural lines—for example, body-prefering patches arise near face-prefering patches even though there is no obvious geometric similarity between these two categories [38]. If the known regions do not emerge in these types of models, it will be important to understand what additional principles are required to build them. If they do, it will also be of interest to search for new model-predicted regions that could subsequently be confirmed or falsified using primate fMRI and electrophysiology experiments.

Which visual properties are explicitly encoded in intermediate ventral stream areas?

Intermediate visual areas such as V2 and V4 have proven especially hard to understand because, unlike V1 and IT, they are removed both from low-level image
properties and from higher-level human semantic intuition [32,39,40]. Because intermediate layers of computational models are predictive of these cortical areas, performing high-throughput ‘virtual electrophysiology’ to characterize the model’s internal structure should yield insight into tuning curves in corresponding cortical areas. One of the key advantages of an image-computable model is that it can be analyzed in great detail at low cost. It will be of great interest to perform high-throughput ‘virtual electrophysiology’ on models to determine what their intermediate units represent. Recent progress in visualization techniques have allowed for structures in intermediate layers to be explored. Techniques that seek to optimize input images either for matching the statistics of existing images or for the activation of a unit (or units) within model higher layers have been seen to produce impressive results in texture generation, image style matching, and model exploration [41*,42,43]. Versions of these techniques could have useful application in neuroscience for efficiently separating multiple candidate models, by optimizing for stimuli that produce the largest difference between two such models, even if, and perhaps most especially if, those alternative models do not differ in simple conceptual ideas. Such techniques (inspired by [9,44]) could be extremely helpful in reducing the huge stimulus space to a set that would be small enough to measure neural responses using existing experimental techniques.

Can models predict the perceptual consequences of direct neural perturbations?

Computational models enable the efficient exploration of the effects of perturbing unit activations in a highly selective manner. In the short term, such an approach could be used to make testable predictions of the behavioral changes (e.g. in facial expression identification ability) that arise from inactivating/stimulating specific subpopulations of units defined by cell type or functionality (e.g. high face-selectivity). Over the next 2–5 years, it should be possible to combine computational models with cutting-edge optical techniques in non-human primates [45,46] to help design highly targeted real-time neural perturbation studies.

Is ‘linear readout’ a real model of downstream neural decoding?

In the above work, it is often implicitly assumed that behavior is generated from neural representations by linear readout, for example, neurons in other downstream brain areas (e.g. PFC, motor cortex, parietal cortex) using the information in the high-level representational areas (e.g. IT) by forming linear combinations of neurons from those areas. In other words, linear classifiers are not merely thought of as ‘information measurement’ devices, but also as a concrete hypothesis for how multiple downstream brain areas could utilize the robust, explicit information in a high-level representation for multiple task purposes [8,47,48]. Evaluating this hypothesis more thoroughly is important, involving a variety of questions, including:

- To what extent is the hypothesis true? Are downstream visual readouts really linear as [8] might suggest, or for some tasks do they need to be (at least somewhat) nonlinear? How important are temporal coding mechanisms in visual task readout?

- Building on [47], can we identify one or several examples of these linear readouts in action, connecting IT to some specific downstream area? What types neurons, in which cortical layers, are involved in the readout process?

- How are linear readouts learned, and over what timescales do they form? For them to play the role they are often assigned in the current models, such readouts would have to form comparatively quickly, with small amounts of on-line training data. Can the process of fast learning be captured empirically? What specific rules of learning are used? Are the classifier weight learning rules implicated more like those using in machine learning classifier algorithms, such as Support Vector Machines (SVMs), or some simpler procedure like linear discriminants [49]? If there really are linear classifier learning algorithms running neurally, do their weightings on input neurons get regularized as they might in machine learning algorithms [50]—that is, discouraged from having strong connections from too many upstream neurons, beyond the constraints imposed by biophysics alone? If so, what type of sparsity priors are imposed by the regularization used in the real brain?

- What are the default readouts that run automatically in a typically inattentive or passive state? How is task-switching accomplished, and how does this relate to attentional state? Presumably the task attention of the animal is deeply connected to switching between the ‘active’ readout at any given time. How is this accomplished mechanistically? How would we even identify the neural signature of ‘active’ readout?

How do feedforward discriminative networks connect to top-down inference in generative models?

The HGN models of vision mentioned above are largely discriminative, in that they model the flow of information from bottom-to-top: information comes in to the system along sensory input arrays (e.g. the retina) and exits via outputs that indicate an attribute of the data relative to an (often discrete) discrimination task (e.g. recognizing a given category of object in the image). However, the generative point of view is also relevant and a potentially critical next step in sensory models. In this view, there is an explicit process through which high-level labels about the world (e.g. object identities,
relation locations and relationships) can be turned into predictions about the low-level (pixel) description consistent with those high-level labels. Generative models are important because they naturally support a number of key cognitive phenomena, such as inference, explaining away, and imagination—and would be a natural source of ‘data’ for self-supervised learning procedures. They also offer the potential of explaining the well-known, but poorly understood role of cortico-cortical feedback connections in the brain. Figuring out how to combine bottom-up discriminative models with more top-down generative models, and connect them both to the neuroscience of visual perception in ambiguous or complex images (like the ‘Dallenbach Cow’ [51]) would be a significant step forward.

How is visual learning actually implemented in the brain?

While recent work has begun to uncover how images are encoded in adult IT cortex, very little is known about how the IT representation arises in the first place. To what extent does visual learning during development shape high-level vision? Computational models—which, at heart, are really the product of learning rules in action—can help us think about these key questions in a new way.

Three important questions associated with this are:

- What aspects of the visual system are evolved, vs. developed, vs. learned? How do the learning rules active during post-natal development differ from those active in expertise learning in adulthood? Mapping learning trajectories in models to developmental data will help make predictions about these important questions.

- What types of data are learning rules receiving? A significant limitation of many of the most effective existing learning rules for computational models—such as error backpropagation for training categorization in deep neural networks—is that they require large amounts of high-level semantically labeled training data. Over the next few years, an important area of research will be the discovery of semi- or unsupervised neural network learning algorithms that blend features of existing machine-learning techniques with constraints from neural data. An intriguing possibility is that heavily supervised category-label training could be replaced by optimization for properties (e.g. position, size, and pose) that can be more easily estimated from motion heuristics in natural video.

- How are learning rules implemented at the circuit level? Existing results suggest a number of cost-function objectives that may be involved in perceptual learning, including stimulus reconstruction goals, efficient-coding constraints [52*], and top-down supervised task prediction errors [53*]. These rules need to be implemented as a (presumably recurrent) part of the neural network that can be then used for tasks during ‘runtime’. By combining high-resolution neural techniques such as calcium imaging and axonal tracing, it may be possible to watch learning in action and use these data to constrain an understand of how the algorithmic rules underlying this learning are implemented in neural circuits.

Can sensory systems beyond vision benefit from performance-driven neural-network approaches?

Recent work in vision suggests a more general hypothesis about how to model sensory cortex: selecting biologically-plausible neural networks for high performance on an ecologically-relevant sensory task will yield a detailed model of the actual cortical areas that underlie that task. Since this idea has some traction in the ventral visual stream, it is natural to ask whether it also yields insight in other sensory domains.

Some initial recent work has found that HCNNs trained to solve challenging high-variation word recognition tasks are predictive of voxel patterns in auditory cortex [54]. These models are also able to differentiate auditory areas, with lower model layers more predictive of inferior colliculus, intermediate layers more predictive of primary auditory cortex, and higher layers of speech and music-selective areas identified in recent imaging studies [55].

These results open up a variety of computational audition questions, including:

- Detailed characterization of non-primary auditory cortex. As with higher visual areas, models can be used to make detailed testable predictions about poorly-understood auditory cortex subregions, especially in relation to speech and natural sound representations [55,56]. This problem could be approached experimentally using both human fMRI/eCOG and non-human primate electrophysiology techniques.

- What auditory tasks best explain cortical differentiation? Given the evolutionary history of audition, non-speech tasks (e.g. environmental sound differentiation) might be as important for driving auditory cortex structure as speech. This question could be explored by training networks on a variety of ecological auditory tasks.

- How do audition-optimized architectures compare to those optimized for vision? Are there deep but hidden structural similarities between visual and auditory cortex that arise from underlying similarities in auditory and visual data? This fascinating question could be attacked both from a purely algorithmic point
of view, as well as by comparing auditory neural data to ventral-stream data.

It will also be of interest to see if similar ideas can be used in other sensory domains. One promising idea would be to model neural responses in rat barrel cortex through hierarchical networks optimized for somatosensory tasks. It is also an intriguing question whether the performance-driven modeling approach will have utility for understanding evolutionarily older sensory systems, such as olfaction, where key challenges will include framing behavioral tasks and architecture classes in the first place.

How should working memory be included? Beyond Sense-At-A-Glance
Largely feedforward models like HCNNs cannot provide a full account of the dynamics of brain systems that store extensible state – most notably, any brain area that involves working memory, since the ‘dynamics’ of a feedforward network will always converge to the same state independent of input. However, in studying behavior downstream of the sensory system, such as that arising from visual working memory, having a computational stand-in for the visual system to use as input to models of memory areas would be of great use. Moreover, there is a growing body of literature connecting recurrent neural networks to neural phenomena in attention, decision making and motor program generation [57,58*,59]. Results from reinforcement learning [60*] have shown how powerful such techniques may be in the realm of AI. Mapping these to ideas in the neuroscience of the interface between ventral visual cortex and (e.g.) parietal cortex or the hippocampus will be of great interest [61,62]. Models that combine rich sensory input systems, as modeled by deep neural networks, with these recurrent networks, could provide a fruitful avenue for exploring more sophisticated cognitive behaviors beyond simple categorization or binary decision making, breaking out of the pure ‘representation’ framework in which sensory models are often cast. This is especially interesting when there could be a complex loop between behavioral output and input stimulus, for example, when modeling exploration of an agent over long time scales in a complex sensory environment [63].

Conclusion
Recent computational advances have transformed our ability to accurately model the neural responses of sensory systems, even at high levels of the sensory hierarchy that were previously deeply mysterious. However, there is much more exciting work to be done, and, if the recent past is a guide to the future, the next successes will require the continued convergence of techniques and workers in neuroscience, machine learning, computer science, and psychophysics.

Conflict of interest statement
None declared.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

A good summary of the first wave of serious application of HCNNs in artificial intelligence and signal processing problems.


52. Barlow HB: Possible principles underlying the transformations of sensory messages. 1961.


60. Mnih V et al.: Human-level control through deep reinforcement learning. *Nature* 2015, 518:529-533. This paper shows how reinforcement learning algorithms can be applied to train HCNNs to play simple video games.

