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A B S T R A C T

People divide their ongoing experience into meaningful events. This process, event segmentation, is strongly
associated with visual input: when visual features change, people are more likely to segment. However, the
nature of this relationship is unclear. Segmentation could be bound to specific visual features, such as actor
posture. Or, it could be based on changes in the activity that are correlated with visual features. This study
distinguished between these two possibilities by examining whether segmentation varies across first- and third-
person perspectives. In two experiments, observers identified meaningful events in videos of actors performing
everyday activities, such as eating breakfast or doing laundry. Each activity was simultaneously recorded from a
first-person perspective and a third-person perspective. These videos presented identical activities but differed in
their visual features. If segmentation is tightly bound to visual features then observers should identify different
events in first- and third-person videos. In addition, the relationship between segmentation and visual features
should remain unchanged. Neither prediction was supported. Though participants sometimes identified more
events in first-person videos, the events they identified were mostly indistinguishable from those identified for
third-person videos. In addition, the relationship between the video’s visual features and segmentation changed
across perspectives, further demonstrating a partial dissociation between segmentation and visual input. Event
segmentation appears to be robust to large variations in sensory information as long as the content remains the
same. Segmentation mechanisms appear to flexibly use sensory information to identify the structure of the
underlying activity.

1. Introduction

The mind represents experience as a series of events that are orga-
nized into part-whole structures (DuBrow & Davachi, 2013; Kurby &
Zacks, 2008). The process by which experience is divided into events,
event segmentation, plays an important role in everything from language
acquisition (Friend & Pace, 2011), to the recognition of other’s inten-
tions (Baird & Baldwin, 2001; Buchsbaum, Griffiths, Plunkett, Gopnik,
& Baldwin, 2015), to episodic memory (Ezzyat & Davachi, 2010;
Swallow, Zacks, & Abrams, 2009), and consequently to the ability to
imagine future events (Buckner & Carroll, 2007). Despite its importance
to cognition, the types of information observers use to divide con-
tinuous experience into meaningful events are underspecified. Though
a close relationship between segmentation and visual input has been
established (e.g., Hard, Recchia, & Tversky, 2011; Zacks, Kumar,
Abrams, & Mehta, 2009), changes in the visual features of an experi-
ence are often correlated with changes in content (Cutting, 2014;
Cutting, Brunick, & Candan, 2012).

This study disentangles the contributions of visual information and

content to segmentation. It examines whether the same activity (con-
tent) is segmented differently when it is viewed from the actor’s (first-
person) perspective rather than from an observer’s (third-person) per-
spective. These perspectives differ in their visual features and support
differential access to the actor’s goals, emotional state, and affordances
with the environment (Jackson, Meltzoff, & Decety, 2006; Lamm,
Batson, & Decety, 2007; Libby & Eibach, 2011; Nigro & Neisser, 1983;
Storms, 1973; Taylor & Fiske, 1975; Vogeley & Fink, 2003; Vogt,
Taylor, & Hopkins, 2003). In addition to testing whether segmentation
is viewpoint dependent, contrasting segmentation across perspectives
provides a unique window into the integration of sensory input with
knowledge of events, and the ease with which observers can take an
actor’s perspective.

1.1. Event segmentation separates and organizes experiences

Event segmentation is measured by asking observers to view an-
other person’s activity (typically recorded on video). As they watch the
activity, observers identify event boundaries by pressing a button

https://doi.org/10.1016/j.cognition.2018.04.019
Received 4 October 2017; Received in revised form 19 April 2018; Accepted 20 April 2018

⁎ Corresponding author.

1 Present address: Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, USA.
E-mail addresses: kms424@cornell.edu (K.M. Swallow), jovan_kemp@brown.edu (J.T. Kemp), ac885@cornell.edu (A. Candan Simsek).

Cognition 177 (2018) 249–262

Available online 05 May 2018
0010-0277/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2018.04.019
https://doi.org/10.1016/j.cognition.2018.04.019
mailto:kms424@cornell.edu
mailto:jovan_kemp@brown.edu
mailto:ac885@cornell.edu
https://doi.org/10.1016/j.cognition.2018.04.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2018.04.019&domain=pdf


whenever they believe one natural and meaningful unit of activity has
ended and another has begun (Newtson, 1973). Despite the task’s de-
liberate ambiguity, observers tend to perform it reliably, agreeing with
themselves and with others about the timing of event boundaries
(Newtson, 1973; Speer, Swallow, & Zacks, 2003). In doing so, they pick
out moments in time that are important for perception and cognition. In
the absence of a segmentation task, event boundaries are associated
with increased activity in a network of brain regions (e.g., Zacks, Speer,
Swallow, & Maley, 2010; Zacks, Tversky, & Iyer, 2001), impact memory
for scenes and objects that were just encountered (DuBrow & Davachi,
2014; Ezzyat & Davachi, 2010; Newtson & Engquist, 1976; Radvansky
& Copeland, 2006; Swallow et al., 2009), and may be sufficient for
understanding an activity (Schwan & Garsoffky, 2004).

Observers are also sensitive to the hierarchical, part-whole structure
of actions, even without an explicit segmentation task (Hard et al.,
2011; Zacks et al., 2001). When asked, observers can vary the grain at
which they segment an activity (Newtson, 1973) and identify events
that capture parts of activities lasting several seconds to minutes.
Shorter, fine events correspond more closely to individual actions per-
formed on objects, while longer, coarse events correspond more closely
to whole interactions with an object and actor goals (Zacks et al., 2001).
As a result, fine events are often contained within coarse events (Hard
et al., 2011; Zacks et al., 2001). Boundaries at both grains affect event
processing during passive viewing tasks (Zacks et al., 2001).

1.2. The relationship between event segmentation, observer knowledge, and
stimulus features

Prominent models of event segmentation suggest central roles for
both sensory information and knowledge of how experiences typically
unfold. One model, event segmentation theory (EST; Reynolds, Zacks, &
Braver, 2007; Zacks, Speer, Swallow, Braver, & Reynolds, 2007), is
based on the idea that perception is fundamentally forward looking,
that it is predictive. It claims that segmentation occurs when predic-
tions no longer accurately capture the current situation, and that larger
prediction errors produce boundaries between coarser grained events.
According to EST, predictions are derived from semantic knowledge of
types of events, actions, objects, and contexts and perceptual and sen-
sory features of the current event.

The importance of bottom-up perceptual and sensory features for
segmentation is strongly supported by research that demonstrates that
the greater the change in the visual and auditory features of an activity
(e.g., motion, body posture, location, scene, audio volume), the greater
the likelihood that a boundary will be perceived (Cutting et al., 2012;
Hard, Tversky, & Lang, 2006; Huff, Meitz, & Papenmeier, 2014;
Magliano, Miller, & Zwaan, 2001; Magliano, Radvansky, Forsythe, &
Copeland, 2014; Newtson, Engquist, & Bois, 1977; Sridharan, Levitin,
Chafe, Berger, & Menon, 2007; Zacks, 2004; Zacks, Speer, & Reynolds,
2009; Zacks et al., 2010). Similarly, machine vision models often map
local visual features (e.g., points in space-time with large luminance
changes in the horizontal, vertical and temporal dimensions) to re-
presentations of action types (as in bag of words models, Peng, Wang,
Wang, & Qiao, 2016). There are limits to the relationship, between
visual changes and segmentation, however: Changes in an actor’s
clothing and large visual changes at film cuts do not increase the
likelihood of segmentation on their own (Baker & Levin, 2015;
Magliano & Zacks, 2011). Thus, segmentation is influenced by changes
in a subset of observable features.

Though many acknowledge the importance of an observer’s goals
and knowledge in segmentation, establishing whether these factors
work independently of sensory input is challenging. This is partly be-
cause changes in content are correlated with changes in visual features
(Cutting, 2014; Cutting et al., 2012). For example, when an actor begins
to empty her cart at a grocery store, changes in motion (the actor’s
movements), the spatial relationship between the actor and the cart
(she moves to the side), and the actor’s posture (she bends to pick up

food) signal a change in the actor’s goals. In the face of this relationship,
most investigations of the role of knowledge and goals in segmentation
have examined how changing an observer’s knowledge affects seg-
mentation. For example, learning statistical regularities in event se-
quences can lead observers to group smaller units into larger units
(Avrahami & Kareev, 1994; Baldwin, Andersson, Saffran, & Meyer,
2008; Buchsbaum et al., 2015; Endress & Wood, 2011; Schapiro,
Rogers, Cordova, Turk-Browne, & Botvinick, 2013). In addition, seg-
mentation behavior may change when an observer’s knowledge of an
actor, the actor’s goals, or his or her activity changes (Bailey, Kurby,
Giovannetti, & Zacks, 2013; Graziano, Moore, & Collins, 1988; Wilder,
1978; Zacks, 2004). There is also some evidence that changing the
observer’s task (e.g., from reproducing an activity, to judging traits) or
beliefs about the purpose of the action may influence when observers
segment an event (Cohen & Ebbesen, 1979; Massad, Hubbard, &
Newtson, 1979). However, it is unclear whether these differences are
greater than one might expect from measurement noise alone (cf. Speer
et al., 2003). Outside the domain of segmentation there is also sub-
stantial evidence that an observer relies on motor and visual-perceptual
knowledge to recognize and comprehend another person’s actions
(Blakemore & Decety, 2001; Fogassi et al., 2005; Glenberg & Kaschak,
2002; Stanfield & Zwaan, 2001; Wilson & Knoblich, 2005; but see
Vannuscorps & Caramazza, 2016).

Other research contrasting the effects of knowledge and sensory
input on segmentation suggest that, although knowledge may influence
the grain at which events are segmented, boundaries are still identified
when sensory input changes. For example, Hard et al. (2006) asked
some participants to view animations five times before they segmented
them. These participants rated the activities as more intentional and
segmented them at a lower rate than participants who segmented the
videos the first time they viewed them. Yet, both groups segmented the
activities at similar points in time. Boundaries were also similar when
the movies were played forward and backward. In all cases, increased
visual change increased the likelihood of identifying an event
boundary. Others have similarly found that segmentation is more
strongly driven by quantifiable and observable visual features of the
videos than it is by knowledge of the activity or its context (Zacks et al.,
2009), or by an observer’s belief that the activity is goal-directed
(Zacks, 2004). The data suggest a prominent role for observable visual
features in segmentation, with weak modulatory effects of the ob-
server’s internal knowledge or goals. Thus, top-down knowledge and
conceptualization of an activity may cause observers to chunk smaller
events into larger events, but appear to have little effect on when ob-
servers identify boundaries or how those boundaries relate to visual
features.

1.3. The effects of perspective on observer knowledge and stimulus features

Most event segmentation research has used videos recorded from
the third-person perspective (for an exception see Magliano et al., 2014).
In these studies, viewpoint is physically separated from the actor and
typically shows most, if not all, of the actor’s body and location within
the broader spatial context. This is consistent with how observers ty-
pically view another person’s activities. However, events also can be
experienced from the actor’s own, first-person perspective. These can
occur with head-mounted cameras, visual imagery, or the spontaneous
adoption of an actor’s perspective (Tversky & Hard, 2009).

First-person perspectives differ from third-person perspectives in
ways that impact both bottom-up sensory input and top-down knowl-
edge and construal of an activity. With first-person perspectives,
changes in viewpoint from head or body movements lead to greater
variability in visual input, and increase motion and blur in videos.
However, objects that are within the actor’s reach are viewed up close
in first-person perspective videos, making their physical features,
identity, and how they might be acted upon more accessible (Borghi,
Flumini, Natraj, & Wheaton, 2012; Jackson et al., 2006; Roche &
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Chainay, 2013; Vogt et al., 2003). In contrast, first-person perspectives
provide less information about the actor’s size, posture, and location
within the larger scene. This could impair the representation of the
scene’s spatial structure and context (Henderson, Larson, & Zhu, 2008)
and the ability to predict the actor’s movements through space (Creem-
Regehr, Gagnon, Geuss, & Stefanucci, 2013). Therefore, rather than the
allocentric (object to object) reference frames afforded by third-person
perspectives, first-person perspectives promote the use of egocentric
(actor to object) reference frames that are centered on and move with
actor (Vogeley & Fink, 2003). If event segmentation depends on these
visual features (it is not viewpoint invariant), then viewing an activity
from the first-person perspective rather than the third-person perspec-
tive should cause an observer to identify different events.

Perspective may also influence how an activity is conceptualized.
For example, rotating a key in a lock can be conceptualized as rotating a
metal object, starting a car, or heading to work to earn money. These
identities vary in how closely they are tied to specific features of the
current situation (i.e., object shape and specific muscle movements),
the actor’s goals, and the actor’s character (Vallacher & Wegner, 1987).
Importantly, the way an observer conceptualizes an activity may be
influenced by whether it was viewed from a first- or third person per-
spective (Libby & Eibach, 2011). Descriptions of first-person perspec-
tives are more concrete and focused on how an action was performed.
Descriptions of third-person perspectives are more abstract, goal-or-
iented, and focused on their purpose (Libby, Shaeffer, & Eibach, 2009).
Similarly, participants who recall an event from a first-person per-
spective are more likely to attribute behavior to the current situation.
Those who recall it from a third-person perspective are more likely to
make dispositional attributions (Mcisaac & Eich, 2002; Nigro & Neisser,
1983; Storms, 1973; Taylor & Fiske, 1975). Thus, first- and third-person
perspectives promote different ways of conceptualizing an activity.
First-person perspectives may lead to more embodied, concrete pro-
cessing and third-person perspectives may lead to more abstract pro-
cessing.

1.4. The current study

Event segmentation data suggest a strong and reliable relationship
between segmentation and the visual features of an ongoing experience,
but offer limited insight into the relationship between segmentation
and both the content of the experience and an observer’s con-
ceptualization of it. Contrasting first- and third-person perspectives
offers a unique way to examine this issue by varying the visual features
of an activity while keeping the activity itself constant. First- and third-
person perspectives also foreground different aspects of an activity,
emphasizing either concrete details of how an activity is performed, in
the case of first-person perspective, or abstract conceptualizations of
why an activity was performed, in the case of third-person perspective
(Libby & Eibach, 2011).

In two experiments we examined whether event segmentation is
invariant across first- and third person perspectives. Six activities were
simultaneously recorded from a stationary camera (third-person per-
spective) and from a head-mounted camera (first-person perspective).
Participants segmented the videos into events of different grains, and
the data were evaluated to determine whether perspective influences
how the events were segmented. Though one study previously found
that people use information about the current situation to identify
events in first-person video games (Magliano et al., 2014), it did not
compare segmentation across perspectives. These experiments should
provide novel insights into whether segmentation is driven by low-level
visual features (similar to viewpoint dependence in object recognition)
or if it is also influenced by the content of the video and the observer’s
conceptualization of the activity (similar to viewpoint invariance).
These possibilities predict different effects of perspective on segmen-
tation rate, when events are segmented, and the relationship between
segmentation and visual features of the videos.

If segmentation is tied to the low-level visual features of a video
such as actor posture and visual change (visual feature dependent hy-
pothesis), they should be strongly related to segmentation for both first-
and third-person videos. However, segmentation should differ across
perspectives to the extent that their visual features differ. Because vi-
sual features change more frequently and at different times in first-
person videos than in third-person videos, first-person videos should be
segmented more frequently and at different times than third-person
videos of the same activity. This pattern would be consistent with
viewpoint dependence in segmentation.

Alternatively, segmentation may be based on the activity content of
the video (content dependent hypothesis). If so, observers should segment
videos of the same activity in the same way, regardless of whether they
view it from a first- or third-person perspective. The relationship be-
tween segmentation and the low level visual features of the video,
however, should change across perspectives. Thus, event segmentation
should be viewpoint invariant in much the same way that object, scene,
and action recognition are invariant across luminance changes, or-
ientations, and occlusions (Rust & Stocker, 2010).

A related hypothesis is that the observer’s focus on different aspects
of the activity will influence segmentation (focus modulated hypothesis).
First-person perspectives may lead observers to focus on concrete as-
pects of how an action was performed, while third-person perspectives
may lead them to focus more on abstract goals. Because focusing on
how an activity is performed increases segmentation rate (Cohen &
Ebbesen, 1979), first-person videos may be segmented at a finer grain
than third-person videos. In addition, visual features should play a
larger role in segmenting first-person videos than third-person videos.
Notably, segmentation of first- and third-person videos may still be
based on the activity content, but just vary in grain. If so, then
boundaries should still occur at similar times in first- and third-person
videos.

Experiment 1 tested these hypotheses by examining the effects of
perspective on when and how frequently observers segment activities in
first- and third-person videos. Experiment 2 was performed as a re-
plication of Experiment 1 and to examine whether perspective influ-
ences the organization of fine events within coarse events.

2. Experiment 1

The first experiment examined segmentation of the same activity
across different perspectives. Three groups of participants were re-
cruited to segment each activity once at different grains (fine, neutral,
and coarse). Each participant segmented half the activities from the
first-person perspective, and the other half of the activities from the
third-person perspective. If segmentation is viewpoint dependent (vi-
sual feature dependent hypothesis), then observers should identify
different units of an activity when it is viewed from different perspec-
tives. If segmentation is invariant across perspectives (content depen-
dent hypothesis), then participants who view an activity from different
perspectives should identify similar events. However, if differences in
the way first- and third-person videos are conceptualized carry over to
segmentation (focus dependent hypothesis), then perspective should
also influence segmentation rate and the role of visual features in seg-
mentation.

2.1. Methods

2.1.1. Participants
Volunteers were recruited from Cornell University’s undergraduate

population and the Institutional Review Board approved all methods
and procedures. All participants provided informed consent.
Participants were compensated $10/hour or with course credit.

Seventy-two participants (51 female; 21 male; age M=20.19 years,
SD=1.86) completed Experiment 1. Sample size was selected before
data collection began following a power analysis with G∗Power (Faul,
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Erdfelder, Lang, & Buchner, 2007). With 1− β= .9 and α= .05, this
experiment had the sensitivity to detect within-between group inter-
actions with effect sizes of f=0.214 (equivalent to η2p= .044) or
greater in a 3×2 Analysis of Variance (ANOVA). Data from 5 addi-
tional participants were excluded from analyses due to computer errors.

2.1.2. Videos
Actors (4 women, 2 men) were recorded performing six activities:

eating breakfast (breakfast, 253 s long), doing laundry (laundry, 231 s
long), organizing a desk and bookcase (office, 212 s long), making a
pasta dinner (pasta, 448 s long), building a table (table, 361 s long), and
clearing toys (toys, 317 s long). A different actor performed each ac-
tivity. Each activity was simultaneously recorded from two vantage
points to produce two videos of the same activity from different per-
spectives (yielding twelve videos). For the third-person video a camera
(GoPro Hero 4, Silver Edition) was positioned on a stationary tripod.
The tripod was positioned as closely as possible to the action while
ensuring that the actor and the objects he or she interacted with were
visible throughout the video, even as he or she moved around the room.
The location was selected to capture as much of the activity from the
front or side of the actor as possible. The camera was positioned at
about the eye level of a typical adult, 5–6 feet above the floor. Viewing
angles were constrained by the layout of the rooms. For the first-person
video the actor wore a camera (GoPro Hero 3+, Black Edition) on his
or her forehead using an elastic head strap (manufactured by GoPro).
The camera was positioned to capture the region of space directly in
front of the actor, including the space in which they would act on ob-
jects. Adjustments were made prior to recording to ensure that the actor
would be able to naturally interact with objects in the camera’s view.
Fig. 1 shows frames from both perspectives for all 6 activities. The

head-mounted camera was visible in the third-person videos. The third-
person camera was rarely visible in the first-person videos. All twelve
videos were acquired at 1910×1080 pixels and 29.98 fps.

Prior to recording the actors rehearsed a rough script to ensure that
they interacted with specific objects in the video, but not others, and
that they performed some actions before others. For example, in the
office activity the actor was asked to dust the bookcase before writing a
note. These directions were included for other experiments that will not
be reported here. Actors were asked to ensure that their actions would
be visible in both videos.

A seventh activity that depicted a man relaxing outside, reading,
and using his phone was used as a practice video. This activity was
recorded on two separate occasions on the same day and with the same
actor. One recording was from the third-person perspective, the other
was from the first-person perspective (both used the GoPro Hero 3+,
Black Edition). Data from this activity were not analyzed.

2.1.3. Video feature coding
Changes in visual features were calculated for every fifth frame in

the videos, after they had been converted to grayscale images.
Luminance was defined as the mean pixel value of the frame. Clutter
was defined as the proportion of pixels in the frame that were classified
as an edge by the Laplacian of Gaussians method in Matlab’s edge de-
tection algorithm (Image Processing toolbox). Other measures com-
pared the frame being measured (e.g., frame 5) to a reference frame
four places earlier (e.g., frame 1). The visual activity index (VAI) cap-
tured the amount of pixel by pixel change from a reference frame to the
current frame. It was calculated by correlating each pixel value in the
current frame and the reference frame and then subtracting the corre-
lation from 1. The VAI was 0 for identical images and 2 for images with

Fig. 1. Frames from the twelve videos, which show six activities from both the first- and third-person perspectives.
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inverted contrasts (Cutting, DeLong, & Brunick, 2011; see also Hard
et al., 2011; Loucks & Baldwin, 2009 for similar measures). Optical flow
captured the amount of relative movement in the videos (magnitude
squared output of the Lucas-Kanade algorithm in Matlab’s Computer
Vision System toolbox). The output, which roughly corresponded to the
squared spatiotemporal derivative, was then averaged for each frame.

Because the videos were recorded with GoPro cameras, they had
fish eye distortions, particularly at their edges. The VAI and optical flow
were also measured for versions of the videos that had the distortion
removed in Adobe Premiere Pro CC 2016 (which also cropped the vi-
deos by 15.5%). The VAI and optical flow mean were strongly corre-
lated across the original and corrected videos (r’s= .897 and .752,
without regard to perspective). Analyses that used measures from the
fisheye corrected videos did not yield substantively different results.
Because participants viewed the uncorrected videos the values for these
videos were used in the main analyses.

Finally, two features of all 12 videos were coded by two in-
dependent raters. Touch onsets were coded when either hand visibly
contacted an object. For example, an actor picking up a jar with her left
hand and then grabbing the lid of the jar with her right hand was two
touch onsets. Touch offsets were coded when the part of the actor
touching the object moved far enough away that the background was
visible between them. Because touch onsets and offsets had to be
visible, they could differ across perspectives. Features were coded for
every video frame, and then binned into 1 s long intervals. With these
criteria, raters showed acceptable inter-rater agreement about the be-
ginnings and ends of contact between the actor and an object (Cohen’s
Kappa= .716). Discrepancies in feature codes binned every second
were resolved by the coders through discussion.

2.1.4. Equipment
Segmentation data were acquired on an iMac (2008, OS 10.8.5)

with a 20 in. LCD display (1024× 760 pixel resolution, 60 Hz refresh
rate). The tasks were programmed and run in Matlab (Mathworks, Inc)
using Psychtoolbox (Brainard, 1997; Pelli, 1997). Testing was per-
formed in an interior, normally lit room. Participants sat approximately
50 cm from the display but were free to move around.

2.1.5. Procedure and design
After participants provided informed consent they completed the

segmentation task. For this task videos were presented one at a time in
the center of the screen (75% of the horizontal dimension of the screen;
aspect ratio was preserved) over a black background. Participants were
told they would view videos of people performing everyday activities
and to press a button whenever they believed one natural and mean-
ingful unit of activity ended and another began. Breaks were offered
between videos.

All participants practiced the segmentation task with the practice
video before segmenting half of the activities from the same perspec-
tive. Following segmentation of the first group of videos, participants
repeated the practice and task for the remaining three activities from
the other perspective. The perspective of the practice video matched the
perspective of the videos that followed. The assignment of activities to
perspective was counterbalanced across participants. In this way, each
participant contributed data to both perspectives but viewed each ac-
tivity once.

Segmentation instructions were varied between participants. For
fine segmentation, participants identified the smallest (fine) units of ac-
tivity. For coarse segmentation, participants identified the largest
(coarse) units. Finally, participants in the neutral segmentation group
were not instructed to identify units of a particular size. Participants
who received fine or coarse segmentation instructions repeated the
practice until they pressed the button within a pre-defined range: 12–30
times (7.3–18.2 times per minute) for fine segmentation and 2–6 times
(1.2–3.6 times per minute) for coarse segmentation. Participants were
never informed of these ranges but were asked to repeat the practice to

identify more (or fewer) activities in the video until performance was
within range. Participants in the neutral condition were not required to
segment within a preset range, allowing them to freely vary the fre-
quency with which they segmented the activities.

2.1.6. Measures and analyses
Statistical analyses were performed in Matlab 2016b (Mathworks,

Inc.) and R (3.3.2), using the core and logistf packages (Heinze &
Ploner, 2004) and custom coded routines. Most measures required ex-
amining the time series of button presses at the group and individual
levels. Each video was divided into 1 s long time periods (bins), and a
time series indicating whether a button was pressed during a bin was
generated for each person who viewed the video (individual time series).
Group time series for each combination of activity, perspective, and
segmentation instruction were created by calculating the proportion of
participants in that condition who pressed the button within each time
bin. Bin sizes were set to 1 s to preserve any variation in the timing of
button presses across perspectives. Data are included as Supplementary
materials which are available online.

2.2. Results

If segmentation is tied to the low-level visual features of the video,
the action content of the video, or the observer’s conceptualization,
then perspective will produce different effects on three measures of
segmentation (Section 1.4): segmentation rate, agreement about the
location of event boundaries, and the relationship between segmenta-
tion and perceptual features of the activity. Because these predictions
assume that visual features differ across perspectives, we first address
whether this was the case.

2.2.1. Visual features
For each video we measured luminance, clutter, visual activity

(VAI), mean optical flow magnitude, and the onsets and offsets of object
touches (Section 2.1.3). Summary statistics are in Table 1. Relative to
third-person videos, first-person videos were darker and less cluttered.
They also had more visual activity, optical flow, and visible touch on-
sets. These differences were significant for clutter, VAI, and optical
flow, largest p= .014, resulted in a trend for luminance, p= .083, and
were not significant for touch onset or touch offset, smallest p= .396.
In addition, visual features were weakly to moderately correlated across
perspectives (Table 1). Despite capturing the same underlying activity,
the visual features of the first- and third-person videos sometimes in-
creased and decreased at different times.

2.2.2. Segmentation rate
Segmentation rates were examined to address two questions. First,

did participants follow instructions, segmenting at different rates for
fine, coarse, and neutral events? Second, did segmentation rates differ
across first- and third-person perspectives, as predicted by the visual
feature dependent and focus modulated hypotheses?

To address the first question, a one-way between subjects Analysis
of Variance (ANOVA) on the number of button presses per minute in-
dicated significant differences across grains, F(2, 69)= 23.34,

Table 1
Mean, standard deviation (in parentheses), and correlations of visual attributes
for each activity (N=6) recorded from first- and third-person perspectives.

Luminance Clutter Flow VAI Onset Offset

First-person 151 (13) .014 (.001) .388
(.099)

.206
(.064)

.263
(.094)

.225
(.072)

Third-person 160 (6.9) .018 (.002) .026
(.013)

.006
(.004)

.244
(.120)

.231
(.092)

Correlation .056 (.148) .140 (.181) .117
(.135)

.335
(.109)

.568
(.104)

.595
(.107)
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p < .001, η2p= .402. As expected, participants identified the most
boundaries under fine segmentation instructions, a moderate number of
boundaries under neutral segmentation instructions, and the fewest
boundaries under coarse segmentation instructions (Table 2).

Of greater interest was whether participants segmented an activity
at different rates when they viewed it from different perspectives.
Because the VAI changed more in first-person videos, the visual feature
dependent hypothesis predicts that segmentation rates will be greater
for first-person videos. The same is true for the focus modulated hy-
pothesis, which predicts that observers will focus more on concrete
actions than on abstract goals when segmenting first person-videos. The
content dependent hypothesis of segmentation predicts that segmen-
tation rates should be similar across perspectives. To test these pre-
dictions, each participant’s data were transformed to z-scores to in-
crease statistical power (Bush, Hess, & Wolford, 1993), and then
submitted to an ANOVA with perspective and grain as factors (Fig. 2a).
The results indicated that standardized segmentation rates were greater
for first-person videos than for third-person videos, F(1, 69)= 5.86,
p= .018, η2p= .078. Though the effect of perspective was numerically
reversed for the neutral grain, the perspective× grain interaction was
not significant, F(2, 69)= 2.20, p= .116.

2.2.3. Boundary agreement
The hypotheses outlined in Section 1.4 make different predictions

about the effect of perspective on boundary identification. The visual
feature dependent hypothesis predicts that participants will identify
different boundaries in first- and third-person videos of the same ac-
tivity because their visual features differ. In contrast, the content de-
pendent hypothesis predicts that participants will identify similar
boundaries for the same activity, regardless of their perspective. The
same is true for the focus modulated hypothesis, which suggests only
that the granularity of segmentation will change across first- and third-
person videos.

To test these predictions, the degree to which an individual agreed
with the boundaries identified by the group of participants who viewed
an activity from the same perspective and the group who viewed it from
the different perspective was assessed. These analyses utilized the in-
dividual-group agreement measure (Kurby & Zacks, 2011) and rest on
the logic that agreement will be greater when individuals and groups
identify similar units of activity. Agreement was quantified by calcu-
lating the correlation between each individual’s time series and the

group time series for the same perspective group (excluding the in-
dividual’s data) and the different perspective group. Correlations were
scaled by the minimum and maximum correlations possible, given the
number of boundaries the participant identified (as in Kurby & Zacks,
2011).

Individual-group agreement (Fig. 2b) was evaluated in an ANOVA
with individual viewer perspective (first vs. third), group perspective
(same vs. different), and grain as factors. Consistent with the content
dependent and focus modulated hypotheses, individual-group agree-
ment did not significantly differ across same and different perspective
groups, F(1, 69)= 0.14, p= .713, and this factor did not significantly
interact with viewer perspective or grain, smallest p= .214 for the
individual viewer perspective× group perspective× grain interaction.
The two other main effects reached or showed a trend toward sig-
nificance. First, individual-group agreement was numerically greater
for individuals viewing the activity from the first-person perspective,
resulting in a trend toward a main effect, F(1, 69)= 3.35, p= .072.
This trend implies that viewing an activity from the first-person per-
spective allows one to more reliably identify boundaries identified from
either perspective. Second, grain reliably influenced individual-group
agreement, F(2, 69)= 49.19, p < .001, η2p= .588, reflecting an in-
crease in agreement from coarse to neutral and neutral to fine grained
events, all t(46) > 4.846, p < .001, d > 1.399. The agreement data
indicate some degree of invariance in segmentation: Observers identi-
fied similar boundaries in first- and third-person perspectives.

2.2.4. The relationship between visual features and segmentation
A critical test of the content dependent hypothesis is whether the

relationship between visual features and boundary identification
changes across perspectives. Because visual features in the first- and
third-person videos are only moderately correlated (Table 1), the re-
lationship between visual features and segmentation should change if
participants identify boundaries based on activity content. The focus
modulated hypothesis suggests that segmentation should be more
strongly associated with the visual features of first-person videos than
of third person videos because they emphasize concrete rather than
abstract information about the activity. Finally, the visual feature based
hypothesis suggests boundaries should be associated with changes in
visual features to the same degree in both types of videos.

This analysis examined whether the relationship between visual
features and segmentation varied across perspectives. Logistic regres-
sion models were first fit to each individual’s segmentation data. The
models included VAI, touch onsets, touch offsets, and their interactions
as predictors. VAI was scaled to have a mean of 0 and a standard de-
viation of 1 within each video. The models utilized the VAI rather than
optical flow because it was more strongly correlated across perspectives
and, upon visual inspection, appeared to more accurately capture the
actors’ movements (see Appendix A). Fit was indexed with the pena-
lized log likelihood ratio statistic (PLR).

To evaluate overall model fit, the PLR was averaged across grains

Table 2
Means and standard deviations of the number of button presses per minute in
each segmentation condition of Experiments 1 and 2.

Fine Neutral Coarse

Experiment 1 10.70 (5.21) 6.01 (5.46) 2.09 (0.87)
Experiment 2 15.59 (6.85) – 2.85 (1.73)

Fig. 2. Segmentation rate (a), indexed by z-scored button presses per minute, and individual-group agreement (b), indexed by the scaled individual-group corre-
lation, in Experiment 1. Error bars indicate± 1 standard error of the mean.
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and perspectives. The expected value under the null hypothesis was
simulated by (1) shuffling the timestamp of the visual features, (2)
recalculating the individual models, (3) averaging across grains and
perspectives, (4) repeating steps 1–3 1000 times, and (5) constructing
95% confidence intervals around mean simulated values. Visual fea-
tures were shuffled as a set to maintain covariance in the predictor
variables. To evaluate the effects of grain and perspective on model fit,
the PLRs from the individual models were evaluated in an ANOVA with
grain, perspective, and their interaction as factors. The probability of
the observed F statistics under the null hypothesis (no effect of per-
spective or grain) was estimated using a resampling procedure, which
randomized the observed PLR values across participants and conditions
before recalculating the F statistics (1000 replications). These proce-
dures were repeated for the observed regression coefficients for the VAI,
touch onsets, touch offsets, and their interactions. Statistics from these
analyses are reported in Tables 3 and 4.

Consistent with previous work, the regression models describing
segmentation as a function of visual features fit the data better than

expected by chance (the observed PLRs were greater than those from
the simulated null distribution, Table 3). Importantly, these models fit
the segmentation data for first-person videos better than they fit the
data for third-person videos (main effect of perspective on PLR, Fig. 3).
Visual features also provided a poorer fit of the coarse segmentation
data than of the fine or neutral segmentation data. This difference
showed a trend toward significance (Table 3). Fit was not reliably in-
fluenced by the interaction of grain and perspective.

Subsequent analyses of the influence of each visual feature on seg-
mentation, captured by the logistic regression coefficient, suggested
that boundaries were more likely to be identified when the VAI in-
creased, when there was a touch onset, and when there was a touch
offset (Table 3). Onsets and offsets were under-additive. The weighting
of the VAI increased from third- to first-person perspectives (Tables 3
and 4). The observations that visual features, particularly the VAI,
better account for segmentation of first-person videos than of third-
person videos are consistent with the content dependent and focus
modulated segmentation hypotheses, but not the visual feature based
hypothesis.

Though the effect of segmentation grain on the relationship between

Table 3
The effects of visual features (VAI, touch onsets, and touch offsets) on the likelihood of a button press and their modulation by perspective and grain in Experiment 1
(N=72) and Experiment 2 (N=24).

Exp Effect Overall Perspective Grain Persp.×Grain

Obs. 95% CI F p η2p F p η2p F p η2p

Exp. 1
PLR 18.554 5.249–8.146 6.575 .016 .087 3.057 .057 .081 0.721 .471 .020
VAI 0.173 −0.113 to 0.095 7.564 .010 .099 9.792 .000 .221 0.802 .432 .023
Onset 0.482 −0.243 to 0.188 0.310 .575 .004 0.208 .817 .006 3.029 .054 .081
Offset 0.430 −0.247 to 0.216 2.552 .103 .036 2.648 .071 .071 0.403 .674 .012
VAI×Onset −0.110 −0.183 to 0.236 4.037 .026 .055 0.247 .846 .007 0.675 .564 .019
VAI×Offset 0.036 −0.246 to 0.327 1.898 .183 .027 0.118 .909 .003 0.142 .864 .004
Onset×Offset −0.496 −0.397 to 0.416 1.091 .280 .016 0.690 .530 .020 2.583 .078 .070
3-Way 0.031 −0.648 to 0.397 2.529 .090 .035 0.251 .779 .007 1.509 .196 .042

Exp. 2
PLR 16.152 4.878–7.967 4.540 .041 .165 34.409 .000 .599 3.400 .075 .129
VAI 0.147 −0.117 to 0.130 5.337 .035 .188 4.806 .019 .173 1.697 .203 .069
Onset 0.484 −0.283 to 0.259 1.229 .241 .051 2.358 .133 .093 3.423 .073 .130
Offset 0.578 −0.276 to 0.274 0.013 .907 .001 6.853 .013 .230 0.102 .752 .004
VAI×Onset 0.040 −0.292 to 0.312 2.064 .162 .082 2.170 .139 .086 0.017 .886 .001
VAI×Offset 0.382 −0.486 to 0.524 8.466 .014 .269 1.344 .276 .055 0.083 .786 .004
Onset×Offset −0.625 −0.415 to 0.487 0.034 .850 .001 8.497 .009 .270 0.040 .844 .002
3-Way −0.423 −0.819 to 0.650 0.899 .358 .038 0.206 .665 .009 0.606 .425 .026

Note: Obs.: Observed value. The observed value for the overall test are averaged across perspectives and grains. 95% CI: interval that captured 95% of the statistics in
a simulation of expected values under the null hypothesis. PLR: Penalized Likelihood Ratio for the full model. For Experiment 1, perspective F degrees of
freedom=1, 69, grain and perspective× grain interaction F degrees of freedom=2, 69. For Experiment 2, F degrees of freedom=1, 23. Values in bold are
unexpected under the null model with p < .05.

Table 4
Mean and standard deviation (in parentheses) of the logistic regression coeffi-
cients from model fits to individual segmentation data in Experiment 1.

Effect Fine Grain Neutral Grain Coarse Grain

First Third First Third First Third

VAI 0.140
(0.150)

0.041
(0.141)

0.247
(0.198)

0.150
(0.108)

0.242
(0.217)

0.216
(0.124)

Onset 0.677
(0.436)

0.329
(0.477)

0.323
(0.903)

0.533
(0.58)

0.523
(0.805)

0.506
(0.500)

Offset 0.199
(0.699)

0.296
(0.399)

0.567
(0.712)

0.631
(0.445)

0.327
(0.819)

0.562
(0.632)

VAI×Onset −0.171
(0.236)

−0.026
(0.34)

−0.261
(0.775)

−0.022
(0.214)

−0.108
(0.336)

−0.069
(0.231)

VAI×Offset 0.009
(0.428)

0.098
(0.297)

−0.009
(0.379)

0.035
(0.304)

−0.020
(0.570)

0.106
(0.375)

Onset×Offset −0.487
(0.656)

−0.22
(0.651)

−0.396
(1.164)

−0.746
(0.704)

−0.411
(1.116)

−0.715
(0.936)

3-Way 0.032
(0.613)

−0.074
(0.589)

−0.133
(1.037)

0.184
(0.641)

−0.107
(0.669)

0.282
(0.864)

Fig. 3. Penalized likelihood ratios of logistic regression models fit to button
presses across perspectives and grains in Experiment 1. Error bars indicate± 1
standard error of the mean.
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visual feature and boundary identification is not the focus of this paper,
it is worth noting that the effects of perspective were consistent across
grains in these analyses. In addition, the relationship between the VAI
and segmentation was smaller for fine boundaries than for neutral or
coarse boundaries (Table 5 and Fig. 5). This difference is consistent
with previous reports indicating that coarse boundaries are associated
with larger frame to frame changes in visual content than are fine
boundaries (Hard et al., 2011).

2.3. Discussion

Experiment 1 provided initial evidence in favor of both the content
dependent and focus modulated hypotheses: The events participants
identified in first- and third-person videos could not be distinguished
from each other, reflecting a change in the relationship between
boundaries and the video’s visual features. However, consistent with
the hypothesis that focus affects segmentation, participants segmented
at a higher rate when they viewed first-person videos rather than third-
person videos during fine segmentation tasks. Experiment 2 was per-
formed to determine whether these effects replicate in a second group
of participants.

3. Experiment 2

The data from Experiment 1 are inconsistent with the visual feature
dependent hypothesis. They also suggest that segmentation may be
based on more concrete conceptualizations of an activity when it is
viewed from the first-person perspective rather than a third-person
perspective. Experiment 2 was performed to test whether these effects
replicate in a new sample of participants.

Another goal of Experiment 2 was to explore the effect of perspec-
tive on the hierarchical organization of fine events within coarse events.
Differences in the availability of particular visual features (e.g., actor
posture, large visual changes from head motion) in first-person videos
could make it difficult to group fine events into coarse events. For ex-
ample, changes in the causal structure of events may be used to identify
coarse boundaries (e.g., Zacks et al., 2010), and these changes may be
less visible in first person videos that offer a limited field of view. Fo-
cusing on concrete, rather than abstract information about an activity
in first-person videos could have a similar effect. Therefore, one im-
plication of the focus modulated hypothesis could be that third-person
videos may be segmented more hierarchically than third-person videos.
In contrast, if segmentation is based on activity content, then per-
spective should have little effect on the hierarchical organization of
events. To test this possibility, each participant in Experiment 2 seg-
mented each video into fine and coarse events and measures of hier-
archical segmentation were examined.

3.1. Methods

3.1.1. Participants
A new group of 24 participants completed Experiment 2 (13 female;

11 male; age M=20.13, SD=1.28). For within-group paired samples
t-tests, 1− β= .9, and α= .05, a sample size of 24 was sensitive to
effect sizes of d=0.69 or greater.

3.1.2. Equipment
Data were acquired on a Dell 7010 Windows 7 PC with a 17 in. CRT

display (1024× 760 pixel resolution, 75 Hz refresh rate) using Matlab.

3.1.3. Procedure and design
Participants in Experiment 2 segmented two activities (office and

laundry, selected because they were shortest in length) into fine and
coarse events from both the first and the third-person perspectives.
Videos and tasks were ordered so activity changed most frequently,
followed by grain, and finally perspective. Thus, participants seg-
mented each activity at both grains before perspective changed.
Activity order, grain order, and perspective order were counterbalanced
across participants.

3.2. Results

To replicate the findings from Experiment 1, the data from
Experiment 2 should show the following: (1) participants identified
more boundaries in first-person videos than in third-person videos, (2)
individual-group agreement on boundary location is similar when the
individual viewed the activity from either the same or different per-
spective as they comparison group, and (3) the relationship between
visual features and boundary identification is greater for first-person
videos than for third-person videos. These findings argue against the
visual feature dependent hypothesis, which predicts that differences in
visual features in first- and third-person videos should cause them to be
segmented differently (contrary to finding number 2) and that the re-
lationship between visual features and segmentation should be con-
sistent across video types (contrary to finding 3).

3.2.1. Segmentation rate
Participants in Experiment 2 followed instructions and pressed the

button more often when they were instructed to identify fine events
(Table 1), t(23)= 10.26, p < .001, d=2.55. In addition, standardized
segmentation rates were numerically greater for first-person videos
than third-person videos (Fig. 3a), though this resulted in a trend to-
ward a significant main effect, F(1, 23)= 3.33, p= .081. The main
effect of grain and the perspective× grain interaction were not sig-
nificant, F(1, 23)= 0.10, p= .753 and F(1, 23)= 0.59, p= .449, re-
spectively. The segmentation rate data therefore followed the same
pattern as Experiment 1, though the perspective effect was not as
clearly present.

3.2.2. Boundary agreement
The feature dependent hypothesis predicts that participants will

segment first- and third-person movies at different times. To evaluate
this possibility, individual-group agreement was analyzed with a re-
peated measures ANOVA that included viewer perspective, group per-
spective, and grain as factors. Unlike Experiment 1, agreement was
greater when individuals and groups segmented an activity from the
same perspective, rather than the different perspective, resulting in a
main effect of group perspective, F(1, 23)= 6.74, p= .016, η2p= .226.
This effect was qualified by a significant three-way interaction between
viewer perspective, group perspective, and grain, F(1, 23)= 4.67,
p= .041, η2p= .169. Overall, agreement was greater during fine seg-
mentation, F(1, 23)= 105.7, p < .001, η2p= .821. There were no
other significant main effects or interactions, smallest p= .193, for the
group perspective× grain interaction.

Table 5
Mean and standard deviation (in parentheses) of the logistic regression coeffi-
cients from model fits to individual segmentation data in Experiment 2.

Effect Fine Grain Coarse Grain

First Third First Third

VAI 0.179 (0.221) 0.020 (0.169) 0.233 (0.369) 0.156 (0.054)
Onset 0.623 (0.590) 0.507 (0.452) 0.209 (0.796) 0.596 (0.678)
Offset 0.753 (0.448) 0.796 (0.461) 0.392 (0.746) 0.373 (0.734)
VAI×Onset −0.106

(0.422)
0.059 (0.301) 0.032 (0.692) 0.177 (0.313)

VAI×Offset 0.069 (0.418) 0.488 (0.777) 0.318 (0.662) 0.653 (1.025)
Onset×Offset −0.840

(0.709)
−0.839
(0.622)

−0.451
(1.168)

−0.368
(1.167)

3-Way −0.271
(0.801)

−0.649
(1.168)

−0.371
(1.080)

−0.401
(1.269)
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An examination of Fig. 4b suggests that the three-way interaction
was driven by higher levels of fine boundary agreement between first-
person viewers and the same perspective group (furthest left bar), but
comparable agreement among all other fine boundary conditions.
Consistent with this characterization, post hoc comparisons indicated
that same and different group agreement differed significantly only
when first-person viewers identified fine events (p < .01 to correct for
multiple comparisons): paired t-tests for fine segmentation of first-
person viewers, t(23)= 4.32, p < .001, d=0.38, and of third-person
viewers, t(23)= 1.78, p= .088; paired t-tests for coarse segmentation
of first-person viewers, t(23)=−0.29, p= .775, and of third-person
viewers, t(23)= 1.85, p= .077. In addition, first-person viewers
agreed with third-person group boundaries (different group) about as
much as did third-person viewers (same group), t(23)=−0.34,
p= .736. This pattern makes straightforward conclusions about whe-
ther individuals identified different fine boundaries from different
perspectives difficult. If perspective influences the identification of fine
boundaries, then same group agreement should be greater than dif-
ferent group agreement for both first- and third-person viewers, not just
first-person viewers. In addition, third-person viewers should agree
more with third-person group boundaries than first-person viewers.
Neither of these patterns was present.

3.2.3. The relationship between visual features and segmentation
The data from Experiment 1 indicated that visual features were

associated with segmentation, but that this relationship was stronger
for first-person videos than for third-person videos. Experiment 2 re-
plicated this pattern, and argues against the visual feature dependent
hypothesis. Model fit (PLR) was reliably better for first-person videos
than for third-person videos, and for fine boundaries than for coarse
boundaries (Fig. 5). Similarly, in Experiment 2 button presses were
more likely when the VAI increased, there was a touch onset, or there
was a touch offset (Table 3). The effects of touch onsets and offsets were
again under-additive. As before, the effect of VAI on segmentation was
greater for first-person videos and for coarse rather than fine events
(Table 5). The data show that VAI, touch onsets, touch offsets, and the
onset× offset interaction consistently affected segmentation across
experiments. The relationship between VAI and segmentation was
consistently stronger for first-person videos than for third-person vi-
deos, supporting the focus modulated segmentation hypothesis.

3.2.4. The effect of perspective on alignment and enclosure
Changing or removing the accessibility of some visual features in a

video could reduce the ability to organize fine events into coarse events.
In addition, if observers conceptualize activities more abstractly when
they are viewed from the third-person perspective rather than the first-
person perspective, participants may better organize them into hier-
archical, part-whole structures. The content based hypothesis predicts

hierarchical organization should be the same in both perspectives.
The hierarchical organization of fine events into coarse events is

indexed by the alignment of coarse and fine boundaries. If coarse
boundaries are aligned with the nearest fine boundary then the observed
distance between them should be less than the distance expected by
chance (Zacks et al., 2001). Hierarchical organization is also evident in
the tendency for coarse boundaries to follow, rather than precede the
nearest fine boundary (enclosure; Hard et al., 2006). There was no
evidence that either measure differed across first- and third-person vi-
deos (Table 6). An ANOVA indicated that alignment was better than
expected by chance, F(1, 23)= 52.75, p < .001, η2p= .696, but did
not vary across perspectives, main effect of perspective, F
(1, 23)= 0.22, p= .644, perspective× score type interaction, F
(1, 23)= 0.49, p= .489. In addition, a t-test indicated that enclosure
was greater than chance (.5), t(23)= 5.05, p < .001, d=1.03 (aver-
aged across perspectives), but did not differ across perspectives, t
(23)=−0.14, p= .886. Participants grouped fine events within coarse
events similarly across perspectives, again suggesting that perspective
has minimal effects on event segmentation (consistent with the content
based hypothesis).

Fig. 4. Segmentation rate (a), indexed by z-scored button presses per minute and individual-group agreement (b), indexed by the scaled individual-group correlation,
in Experiment 2. Error bars indicate± 1 standard error of the mean.

Fig. 5. Penalized likelihood ratios of logistic regression models fit to button
presses across perspectives and grains in Experiment 2. Error bars indicate± 1
standard error of the mean.

Table 6
Mean observed and expected alignment and enclosure scores for each per-
spective in Experiment 2, with standard deviations in parentheses.

Alignment (seconds) Enclosure

First Third First Third

Observed 1.60 (1.82) 1.59 (1.47) .614 (.166) .620 (.141)
Expected 2.65 (1.74) 2.86 (1.94) .5 .5
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3.2.5. Discussion
Three main findings resulted from Experiment 1: (1) greater seg-

mentation rates of first-person than third-person videos, (2) no differ-
ence in individual-group agreement across same and different groups,
and (3) stronger association between visual features and segmentation
of first-person videos than third-person videos. Only the third finding
was unequivocally replicated in Experiment 2. Though segmentation
rates were numerically greater for first-person videos, the difference
resulted in a trend toward a main effect of perspective. Individual-
group agreement was similar across same and different groups in most
conditions, but a three-way interaction indicated that perspective may
have a small effect on fine boundary identification. It is possible that
additional experimental power would have revealed more consistent
effects of perspective on boundary identification. However, in
Experiment 2 agreement was comparable to levels reported in studies
that exclusively used third-person videos (.60–.64 in Experiment 2 and
.61–.69 in Kurby & Zacks, 2011). In addition, the effect of perspective
was less than half the size of the differences observed across age groups
(Kurby & Zacks, 2011). This, combined with a non-replication of this
difference in Experiment 1, suggest that the effect of perspective on
individual-group agreement is small if it is reliably present.

The strongest and most consistent finding across the two experi-
ments is the observation that visual features are more strongly related
to segmentation of first-person videos than third-person videos.
Experiment 2 also evaluated the effect of perspective on the hier-
archical organization of fine into coarse events. A lack of an effect of
perspective in this measure further affirms that segmentation is con-
sistent across perspectives. This finding is consistent with the content
based hypothesis.

4. General discussion

Changing the perspective from which an activity is viewed changes
the visual features that an observer can use to segment it. First- and
third-person videos in this study differed in clutter, visual activity, and
in whether touch onsets or offsets were visible. They also differed in
which features were accessible and visible (e.g., actor posture, hands,
body, and head). It is not surprising that first-person videos changed
more than third-person videos, or that visual features were not strongly
correlated across perspectives. What is remarkable, however, is that
these visual differences had small and inconsistent effects on the way
participants divided the activity into parts. By varying the features of an
activity without changing the activity itself, Experiments 1 and 2 re-
vealed that segmentation is relatively robust to changes in the visual
input, ruling out the visual feature dependent hypothesis. Instead,
segmentation mechanisms appear to flexibly use visual information to
identify the structure of the underlying activity in a manner that is
mostly viewpoint invariant.

4.1. Invariance in segmentation and action recognition

Recent findings have emphasized the central importance of visual
features in segmentation. These include the findings that people iden-
tify similar boundaries when the video is played backward (Hard et al.,
2006), that similar boundaries are identified for visually rich videos and
visually sparse videos with similar motion characteristics (Zacks et al.,
2009), that a large proportion of variance in segmentation behavior can
be explained by variance in visual features (Cutting et al., 2012), and
that eye movements are affected more by visual features and editing
techniques than by observer knowledge (Loschky, Larson, Magliano, &
Smith, 2015). In all of these studies, visual information may be im-
portant because it is directly used by segmentation mechanisms or it
may be important because it is correlated with other information that is
(e.g., knowledge about action, intentionality, etc.).

Experiments 1 and 2 suggest that the relationship between visual
features and segmentation exists because those features are correlated

with higher-level visual or conceptual features of the activity itself.
Despite clear and repeated evidence that body posture is correlated
with segmentation in prior work (Hard et al., 2006; Newtson et al.,
1977), observers in Experiments 1 and 2 identified similar events when
they could see body posture (in third-person videos) and when they
could not (in first-person videos). Therefore, being able to directly
observe an actor’s body and posture is not necessary for segmentation.
This finding mirrors robust action recognition when motion trajectories
vary (Loucks & Baldwin, 2009) as well as findings that visual transients
and discontinuities produced by cuts in narrative film do not lead to
segmentation on their own (Baker & Levin, 2015; Magliano & Zacks,
2011).

These data provide initial evidence of invariance in segmentation
behavior, but cannot speak directly to how it might be achieved. This is
particularly true given the status of the invariance debate in object
recognition (Biederman, 1987; Edelman & Bülthoff, 1992; Gauthier &
Tarr, 2016). Recent approaches suggest that, to the degree it exists,
invariance in object recognition arises from the multi-dimensional and
hierarchical structure of visual processing and may be task or context
dependent (DiCarlo & Cox, 2007; Gauthier & Tarr, 2016; Rust &
Stocker, 2010). Considerations of how actions are represented and in-
fluenced by task and context are likely to provide the most insight into
invariance in segmentation. It is possible that viewpoint dependence
will be more evident early in development, when events are novel, or if
viewpoint influences the ability to distinguish the object types, tokens,
and states that are part of an event (Hindy, Solomon, Altmann, &
Thompson-Schill, 2015). Explorations of when invariance emerges in
development and learning will be highly informative.

Two additional questions along these lines should be addressed in
future research. First, understanding of the effects of perspective in
segmentation will benefit from examining the role of high-level con-
ceptual features of an activity to the segmentation of first- and third-
person videos. For example, research that has examined segmentation
of narrative text, film, and picture stories (e.g., Magliano, Kopp,
McNerney, Radvansky, & Zacks, 2012; Magliano et al., 2014; Zacks
et al., 2009, 2010), have demonstrated that changes in actor goals,
object interactions, and actions are associated with boundary identifi-
cation in segmentation tasks. If these features can be reliably coded and
identified within first- and third-person videos (see Yordanova et al.,
2017, for why this may not be trivial), then high-level conceptual fea-
tures of an activity could be used to segment it from different per-
spectives.

Second, it will be important to evaluate whether the information
used to identify actions in machine vision is present in both first-person
and third-person videos, and, if it is, whether people use similar types of
information to segment events. One common approach to action re-
cognition in machine vision is to identify spatiotemporal interest points
(luminance changes in space and time) and map these to action tem-
plates (e.g., Peng et al., 2016). Other approaches track hand or head
motion (e.g., Singh, Arora, & Jawahar, 2016) or object locations and
states over time (e.g., Lea, Reiter, Vidal, & Hager, 2016) in first- or
third-person videos. Both types of visual information may be more di-
agnostic of an event boundary than the VAI. An application of these
algorithms to the videos used in this study could therefore provide
additional insight into the types of information people use to segment
events.

4.2. The role of perspective in segmentation

Perspective influences the way people construe and represent the
activities of others and of themselves. The data from this study suggest
this may affect the relationship between segmentation and visual fea-
tures. Beyond differences in their visual features, first- and third-person
perspectives play different roles in narrative comprehension, episodic
memory, the integration of new knowledge into one’s sense of self, and
attributions (Borghi, Glenberg, & Kaschak, 2004; Brunyé, Ditman,
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Mahoney, Augustyn, & Taylor, 2009; Libby & Eibach, 2011; Mcisaac &
Eich, 2002; Nigro & Neisser, 1983; Storms, 1973; Taylor & Fiske, 1975).
In addition, first-person perspectives facilitate an observer’s access to
motor routines that are employed when performing an activity (Jackson
et al., 2006; Vogt et al., 2003). Access to this type of information may
be important for segmentation: The ability to perform an activity is
related to the way an observer segments and represents it in memory
(Bailey et al., 2013).

Though less obvious, perspective and sensory information may play
a role in the comprehension of events that are communicated through
language as well as events that are viewed. Narrated events appear to
be segmented in a manner that is similar to observed events (Magliano
et al., 2001; Speer, Zacks, & Reynolds, 2007), and may lead readers and
listeners to represent their physical, motoric, and emotional features
(Borghi et al., 2004; Ruby & Decety, 2001; Speer, Reynolds, Swallow, &
Zacks, 2009; Stanfield & Zwaan, 2001). There is some evidence that
perspective in narrative influences the way listeners represent the
events they describe (Abelson, 1975; Franklin & Tversky, 1990;
Franklin, Tversky, & Coon, 1992). For example, mental representations
of narrated events appear to be richer and longer lasting when pro-
nouns that encourage embodiment (“you” rather than “I”) are used
(Brunyé, Ditman, Mahoney, & Taylor, 2011; Brunyé et al., 2009;
Ditman, Brunyé, Mahoney, & Taylor, 2010; Ruby & Decety, 2001).
Despite the evidence that perspective influences event understanding,
however, it did not consistently influence the way participants divided
an activity into meaningful events. The functional properties of first-
and third-person perspectives in other domains had small effects on
event segmentation.

Perspective did, however, change the relationship between seg-
mentation and the visual features of the videos. This pattern is con-
sistent with views that suggest that first- and third-person perspectives
differ along a concrete-abstract dimension (Libby & Eibach, 2011). If
this were the case, then segmentation of first-person videos would be
more closely tied to perceptual information than segmentation of third-
person videos. This is exactly what was observed in Experiments 1 and
2. In addition, if it is reliable, the tendency to identify smaller events for
first-person videos in Experiment 1 (and, less clearly in Experiment 2)
may similarly reflect a greater emphasis on how the activity is per-
formed, rather than on the actor’s goals. Whereas verbal descriptions of
fine events tend to emphasize actions on objects, descriptions of coarse
events tend to emphasize goals (Cohen & Ebbesen, 1979; Zacks et al.,
2001).

The present data bear only on the question of whether perspective
influenced segmentation, and do not speak to whether perspective in-
fluenced other aspects of event encoding and memory. For example,
when perspective is manipulated observers’ descriptions of an activity
may differ in their focus on how (sensorimotor features, emotional
states, etc.) or why (goals, actor traits, and consequences) the activity
was performed, even when grain is held constant. In addition, pre-
senting an activity from different perspectives may alter the way it is
remembered, possibly encouraging the representation of more percep-
tual detail from first-person videos. Additional research is needed to
explore these possibilities.

4.3. Mechanisms of event segmentation

The finding that segmentation behavior is similar across perspec-
tives constrains theory on event segmentation. Currently, theories of
event segmentation focus on three types of mechanisms: model-based
prediction (EST; Zacks et al., 2007), statistical learning (Avrahami &
Kareev, 1994; Buchsbaum et al., 2015; Endress & Wood, 2011), and
post hoc comparison (Baker & Levin, 2015; Hymel, Levin, & Baker,
2015). The data from Experiments 1 and 2 suggest that adult observers
are unlikely to segment familiar activities based purely on viewpoint
dependent information. We explore the implication of this finding for
each type of approach below.

According to EST (Zacks et al., 2007), observers use sensory input in
conjunction with knowledge of event types (schemata) to build an in-
ternal model of the current situation (event models). These models
generate predictions about upcoming perceptual input that are com-
pared to the actual input. If prediction error is too high, the model is
reset and updated to reflect the new situation. Because prediction error
signals may be distributed throughout the brain (Clark, 2016; Friston,
2009; Henson & Gagnepain, 2010; Summerfield & Egner, 2009), mis-
matches in prediction and input from low-level sensory processing to
high-level context representations, could be important for determining
the adequacy of an event model. One implication of Experiments 1 and
2 is that low-level sensory predictions play a minor role in segmenta-
tion. Frame to frame change in visual input was correlated with when
participants segmented both types of videos, but differences in VAI did
not cause participants to identify different events in most cases. Thus,
within the EST framework, error monitoring and gating mechanisms
are likely to be sensitive high-level representations of information that
is abstracted or inferred from the visual features of the videos. This may
include parts of action, biological motion patterns, object states, or the
spatial relationship between actors and objects, which observers can
identify across varying perspectives (Endress & Wood, 2011; Epstein,
Higgins, & Thompson-Schill, 2005; Grossman, Jardine, & Pyles, 2010).

Other accounts of segmentation also emphasize sequential structure
in events, which can be used to predict sensory input and chunk ex-
perience into units (Avrahami & Kareev, 1994). A variety of statistical
learning mechanisms have been explored, including transitional prob-
abilities (which capture the ability to predict the next item in a se-
quence, e.g., Baldwin et al., 2008), position based learning (which
captures when actions occur relative to other salient events, e.g.,
Endress & Wood, 2011), and temporal community structure (which
captures clustering of items in time, Schapiro et al., 2013). This sta-
tistical information may be learned and used to mark boundaries be-
tween units or chunks of items. The data from Experiments 1 and 2
suggest that once a chunk is learned, it must be recognizable from a
variety of perspectives and when information is missing. Position based
statistical learning mechanisms can support chunk recognition across
multiple third-person viewpoints (Endress & Wood, 2011) and therefore
may play a larger role in segmentation than mechanisms that do not
generalize to new perspectives.

Finally, at least one account of segmentation suggests that it occurs
via post hoc comparison processes, which are triggered by changes in
spatial layouts (Baker & Levin, 2015; Hymel et al., 2015). Baker and
Levin (2015) suggest that although representations of the external
world are limited (e.g., Hayhoe & Ballard, 2005), the spatial config-
uration of a recently encountered scene is maintained in memory and
compared to current perceptual input. Changes in spatial configurations
lead to segmentation. The data from Experiments 1 and 2 may be
consistent with this claim. Allocentric representations of spatial con-
figurations by the hippocampus may be used to generate egocentric
representations of spatial configurations (Bird & Burgess, 2008). In
addition, spatial configurations of scenes and events are recognizable
from multiple third-person perspectives, particularly when they carry
semantic information (Epstein et al., 2005; Huff, Schwan, & Garsoffky,
2011). However, first-person videos provided neither direct access to
the complete spatial layout of the scene nor the viewpoint stability of
third-person videos. As a result, representations of the scene will need
to be built up over much longer periods of time and from restricted field
of views that rapidly change.

Though there is more work to do be done, a sketch of the types of
information that are used to break experience into meaningful events
has begun to emerge. Rather than being tied directly to specific low-
level visual features, segmentation is likely based on information ex-
tracted from sensory input that varies in proximity, orientation, the
presence or absence of some types of visual information, and even scene
layouts across different perspectives. Spatial configurations and se-
quential structure are also important. Together, these findings point to
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representations that associate high-level representations of items with
their spatiotemporal context. This type of representation could be
realized by the hippocampus and its connections to cortex (Bird &
Burgess, 2008; Davachi, 2006; Eichenbaum, 2004; Smith & Mizumori,
2006). Indeed, a growing literature explicitly links event segmentation
to hippocampal function (Bailey et al., 2013; DuBrow & Davachi, 2013;
Ezzyat & Davachi, 2010; Swallow et al., 2011). Invariance in segmen-
tation supports this relationship.

4.4. Conclusion

Since a paradigm to study it was first developed, segmentation has
been linked to visual features of experiences, such as actor posture,
object motion, and changes in spatial location (Kurby & Zacks, 2008).
In contrast, two experiments demonstrated that differences in the visual
features of first- and third-person perspectives had little effect on event
segmentation. Though real and reliable, the relationship between seg-
mentation and visual features appears to be mediated by content.
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Appendix A

See Fig. A1.

Fig. A1. Visual features of the first 90 s of the toy activity from the first- (gray lines) and third- (black lines) person perspectives (a). Values for luminance, clutter,
optical flow, and VAI have been standardized (M=0; SD=1). Time periods 1 and 2, indicated by the vertical rectangles, are examples of optical flow diverging for
two similar shifts in the actor’s body position in the first-person video. In time period 1, optical flow is low despite movement in the actor’s head and upper body. In
time period 2, optical flow spikes for a similar shift in the actor’s position. VAI increased in both instances. Frames from the third-person video show the actor’s
position changed in both instances.
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cognition.2018.04.019.
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