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Abstract Statistical regularities in our environment enhance
perception and modulate the allocation of spatial attention.
Surprisingly little is known about how learning-induced
changes in spatial attention transfer across tasks. In this study,
we investigated whether a spatial attentional bias learned in
one task transfers to another. Most of the experiments began
with a training phase in which a search target was more likely
to be located in one quadrant of the screen than in the other
quadrants. An attentional bias toward the high-probability
quadrant developed during training (probability cuing). In a
subsequent, testing phase, the target’s location distribution
became random. In addition, the training and testing phases
were based on different tasks. Probability cuing did not trans-
fer between visual search and a foraging-like task. However, it
did transfer between various types of visual search tasks that
differed in stimuli and difficulty. These data suggest that
different visual search tasks share a common and transferrable
learned attentional bias. However, this bias is not shared by
high-level, decision-making tasks such as foraging.

Keywords Spatial attention . Incidental learning . Probability
cuing . Visual search

Humans possess powerful mechanisms for statistical learning,
allowing us to extract visual or auditory regularities from the

environment (Orbán, Fiser, Aslin, & Lengyel, 2008; Reber,
1993; Saffran, Aslin, & Newport, 1996). Even subtle statisti-
cal regularities, such as the transitional probability between
sounds or novel shapes, are easily extracted, often after just
minutes of exposure (Fiser & Aslin, 2001, 2005; Hay,
Pelucchi, Graf Estes, & Saffran, 2011; Olson & Chun, 2001;
Saffran et al., 1996; Swallow & Zacks, 2008; Turk-Browne,
2012). Statistical learning not only allows us to perceptually
distinguish learned from unlearned information, but also
changes how we act in the world. An important mechanism
by which statistical learning changes behavior is attention
(Brady & Chun, 2007; Chun & Jiang, 1998; Zhao, Al-
Aidroos, & Turk-Browne, 2013). For example, past learning
of important locations changes how we attend to the visual
environment in the future. However, surprisingly little is
known about whether these changes in spatial attention gen-
eralize across different visual tasks.

In the present study, we examined whether visual statistical
regularities extracted in the context of one task produce a
general spatial bias that is observable in other tasks, or wheth-
er the learned spatial bias is task-specific. Addressing this
question has practical implications for understanding the gen-
eralizability of attention training from one task to another. In
addition, it helps elucidate the nature of statistical learning and
its impact on spatial attention. Previous research has not
yielded definitive answers to this question. On the one hand,
an active task is often unnecessary to produce visual statistical
learning, which can take place after passive exposure to ob-
jects or sounds (Folstein, Gauthier, & Palmeri, 2010; Reber,
1993; Saffran et al., 1996). Learning occurs in an unsuper-
vised fashion (Fiser & Aslin, 2001), and its outcome is detect-
able in a variety of testing tasks (Turk-Browne, Jungé, &
Scholl, 2005). These findings may suggest that learning is
task-independent. On the other hand, studies have shown that
the training task sometimes modulates what is learned. For
example, when performing a task that extracts the “summary
statistics” of an array of lines (e.g., the average orientation),
participants fail to learn the co-occurrence of lines on that
array (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). In
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addition, spatial context learning of a visual display shows
limited or no transfer between visual search and change de-
tection tasks (Jiang & Song, 2005). These findings raise the
possibility that the effects of statistical learning on spatial
attention could be task-specific.

We examined the task specificity of attention training via
location probability learning. In this paradigm, participants
search for a target among distractors. Across multiple trials,
the target is more often found in some locations than in others.
Although participants usually cannot identify the high-
probability locations, they nevertheless find the target more
quickly and with greater efficiency when it appears in those
locations (Jiang, Swallow, & Rosenbaum, 2013). Because the
probability that a target will appear in a particular location
cues spatial attention, enhanced search at high-probability
locations is known as probability cuing (Druker & Anderson,
2010; Geng & Behrmann, 2002, 2005; Jiang, Swallow,
Rosenbaum, & Herzig, 2013; Miller, 1988).

Like explicitly cued attention, probability cuing reflects a
spatial bias toward certain locations. However, unlike ex-
plicit cuing, probability cuing relies on incidental, long-
term statistical learning of the target’s likely locations
(Geng & Behrmann, 2005; Jiang, Swallow, Rosenbaum, &
Herzig, 2013). Once acquired, probability cuing exhibits
striking long-term persistence. The spatial bias toward the
previously trained high-probability locations is robust one
week after training, and over several hundred trials of ex-
tinction retraining (Jiang, Swallow, Rosenbaum, & Herzig,
2013). It persists even after participants are told that the
target’s location will be random (Jiang, Swallow, & Sun,
2014). In addition, this bias is predominantly egocentric.
The learned spatial bias persists in the same visual field
locations following changes in the observer’s viewpoint
(Jiang & Swallow, 2013a, 2013b).

The persistence of probability cuing over time raises ques-
tions about whether it generalizes across tasks, or whether it is
specific to the training task. Previous research has not system-
atically addressed this question. Most models of spatial atten-
tion depict it as a priority map that weighs some locations
more heavily than others (Bisley & Goldberg, 2010; Fecteau
& Munoz, 2006; Itti & Koch, 2001). The priority weights are
determined by top-down factors, such as the observer’s ex-
plicit goal, and bottom-up factors, such as perceptual saliency
(Desimone & Duncan, 1995; Egeth & Yantis, 1997; Wolfe,
2007). In addition, one’s past experience often guides spatial
attention (Awh, Belopolsky, & Theeuwes, 2012; Chun, 2000;
Hutchinson & Turk-Browne, 2012; Jiang, Swallow,
Rosenbaum, & Herzig, 2013; Jiang, Won, & Swallow,
2014). Yet, unlike an explicit goal or perceptual saliency,
previous experience includes a possibly infinite amount of
information. It is unclear whether momentary attentional allo-
cation draws upon all prior experience or only relies on
experience from the same task.

Evidence for a generic spatial attention map has come from
neurophysiological studies that link the posterior parietal cor-
tex to the attentional priority map (for a review, see Bisley &
Goldberg, 2010). Because the posterior parietal cortex is
broadly involved in a variety of visual attention tasks (Dun-
can, 2010; Jiang &Kanwisher, 2003;Wojciulik & Kanwisher,
1999), it is possible that training in any task will result in a
generic and persistent change in how visual space is priori-
tized. This view predicts that the attentional bias acquired
from one task (such as visual search) should persist when
people perform a different task (such as foraging).

However, task specificity in probability cuing could occur
if learning influences mechanisms that are used in one task but
not in another. For example, the feature integration theory
distinguishes feature search from conjunction search. Simple
feature search (such as finding a red object among green ones)
reflects simultaneous, parallel distribution of attention across
all locations, whereas conjunction search (such as finding a
red vertical among green verticals and red horizontals) relies
on the serial allocation of attention from one location to
another (Treisman, 1988). Unlike the feature integration the-
ory, the guided search model treats feature search and con-
junction search as different ends of a continuum (Wolfe,
2007): Some search tasks are highly efficient, whereas others
require serial scrutiny of the search items (Wolfe, 1998). If
different search tasks rely on different mechanisms, then
probability cuing might not transfer across them.

The following experiments present our systematic attempt
at characterizing the task specificity of probability cuing.
These empirical data are the basis for placing changes in
spatial attention on a continuum ranging from not at all
specific to highly task-specific. In turn, they help us under-
stand how the visual system uses previous experience to
prioritize spatial attention.

Experiment 1

We started out by testing the most generic view: When
performing a task, the visual system favors locations that were
prioritized in previous tasks. A straightforward way to imple-
ment a task-general attentional bias is by modulating the
weights on a generic attentional priority map. Locations that
were important in the training task receive higher weights on
the priority map. The same map may then be used when
performing additional tasks. If this occurs, then an attentional
bias developed in one task (such as visual search) should
persist when the task changes (e.g., to foraging).

We used two tasks in Experiment 1: a standard visual
search task, in which participants searched for a T target
among L distractors, and a foraging-like task, in which par-
ticipants guessed the location of hidden treasure under one of
several items (Fig. 1). Both tasks involved finding a “target”
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among several nontargets. However, the search task was vi-
sually guided and required matching the search items to a
target template (the “T”). It involves frequent stop-and-go
until the target was found. In contrast, the treasure hunt task
was primarily a high-level decision-making task. Participants
had no way of knowing which item contained treasure; they
only found out after they had selected an item and received
feedback. The treasure hunt task was modeled after foraging-
like tasks, in which human behaviors follow the “matching
law” (Herrnstein, 1974). Specifically, the probability that peo-
ple will choose a given location is correlated with the proba-
bility that the target is in that location (Baum, 1974; Pierce &
Epling, 1983). Thus, both visual search and treasure hunt are
likely to produce an attentional bias toward the high-
probability locations. But does this bias transfer between
tasks?

The participants in Experiment 1 were tested in two
consecutive phases. In the training phase, they performed
either the visual search task or the treasure hunt task. The
target appeared in a selected “rich” visual quadrant on
50% of the trials, and in any one of the other three
“sparse” quadrants on 16.7% of the trials. In the testing
phase, they performed the other task. Because we were
interested in the persistence of the trained attentional bias,
we did not introduce a new attention bias in the testing
phase. Instead, the target was equally likely to appear in
any of the four quadrants (25%) during testing. If all tasks
share a common and transferrable attentional priority
map, then probability cuing acquired in one task should
transfer to the other task.

Two versions of Experiment 1 were administered to differ-
ent participants. In Experiment 1A (Fig. 1a), the search and
treasure hunt tasks differed in their set sizes (12 items in the
visual search task and eight items in the treasure hunt task) and
stimuli (T/Ls vs. treasure chests). In Experiment 1B (Fig. 1b),
the two tasks used similar displays (eight items in both tasks,
and the treasure chests were represented by Ls). Testing both
versions informed us about the specificity of probability cuing
to tasks and display properties.

Method

Participants A group of 48 students (18–35 years old) from
the University of Minnesota completed Experiment 1 in ex-
change for extra course credit and a small prize. They were
naive to the purpose of the study and had normal or corrected-
to-normal visual acuity. Half of the participants completed
Experiment 1A, and the other half, Experiment 1B.

Equipment Participants were tested individually in a room
with normal interior lighting. They sat in front of a 19-in.
CRTmonitor. The viewing distance was approximately 57 cm
but was unconstrained. The experiment was programmedwith
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) imple-
mented in MATLAB (www.mathworks.com).

Visual search To initiate each trial, participants clicked on a
small square (0.34° × 0.34°) with a mouse. The square was
presented at a random location within the central 2° × 2°
region of the monitor. The mouse click required eye–hand
coordination and enforced fixation prior to the next trial. After
the click and a 200-ms blank period, the search display was
presented. Participants were asked to find the T and to report
whether it was rotated to the left or the right. Both accuracy
and speed were emphasized. The display was presented until a
response was made. Three rising tones lasting a total of
300 ms followed a correct response. A buzz (200 ms) and a
blank interval (2 s) followed an incorrect response.

The search display contained one Tand several Ls (11 Ls in
Exp. 1A, and 7 Ls in Exp. 1B). Each search item subtended
1.37° × 1.37°. The T was tilted 90° randomly to the left or to
the right. The orientation of each Lwas randomly chosen from
four possible orientations (0°, 90°, 180°, or 270°). The two
segments of the L had a small offset (0.17°).

The search items were black presented against a gray
background. The items were presented at randomly selected
locations within an invisible 10 × 10 matrix (22.2° × 22.2°),
with the constraint that an equal number of items appeared in
each quadrant.

Choose a treasure chestT rotated le or right?

A

Choose a treasure itemT rotated le or right?

B

Fig. 1 A schematic illustration of the tasks and stimuli used in Experi-
ment 1. a In Experiment 1A, the visual search and treasure hunt tasks
differed in set sizes and display appearances. b In Experiment 1B, the two

tasks had similar set sizes and display appearances. Items are not drawn to
scale, and the quadrant borders were not actually shown in the experiment
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Treasure hunt As in the visual search task, participants
clicked on a small square to initiate each trial of the treasure
hunt task. After a 200-ms blank period, they were shown eight
identical treasure chests (1.37° × 1.37°, Exp. 1A) or eight
randomly oriented Ls (Exp. 1B). Two items were in each
quadrant, placed at random locations on the display (as in
the visual search). Participants were told that one of the eight
items contained gold coins, whereas the others contained old
boots. They were given one chance to guess where the gold
coins were by clicking on one of the items. The display was
erased with the mouse click, revealing at the chosen location
either gold coins (along with a high tone) or old boots (along
with a low tone) for 300 ms. This was followed by a feedback
display that lasted 1 s. The feedback display was similar to the
treasure hunt display, except that the contents of all of the
treasure chests or Ls were revealed (i.e., one of them had gold
coins, the rest of them had old boots). Participants received 1
point for each trial on which gold coins were found. They
accumulated points and traded them for pieces of candy or a
cash prize of similar value (1 cent per point).

Design The experiment was divided into two consecutive
phases that differed in the task and the target’s location proba-
bility. There were 384 trials in each phase, binned into 32 blocks
of 12 trials each. We chose 12 trials as the size of an experi-
mental block because this was the smallest number of trials
necessary to produce a balanced experimental design across
conditions. Half of the participants in each experiment per-
formed visual search in the training phase and treasure hunt in
the testing phase, whereas the other half had the reverse order.

During the training phase, the target’s location probabilities
were unequal across the four quadrants. The target appeared in
a “rich” quadrant on 50% of the trials, and in any one of the
three “sparse” quadrants on 16.7% of the trials. The specific
quadrant that was “rich” was counterbalanced across partici-
pants, but it remained the same during training for a given
participant. Participants were not informed of this manipula-
tion. In the testing phase, the target appeared with equal
probabilities in each visual quadrant (25%).

Participants completed ten practice trials in each task at the
beginning of the experiment. Upon completion of the exper-
iment, they were asked to identify the rich quadrant with a
mouse click.

Results

In this experiment and subsequent ones, the overall accuracy
in visual search was higher than 96%. Analyses of variance
(ANOVAs) on accuracy revealed no speed–accuracy trade-off
in any of the experiments. The mean RT for correct trials was
calculated for each participant after outliers had been removed
(RTs longer than 10 s were outliers—typically less than 0.3%
of trials).

In the treasure hunt task, we measured the percentage
of trials on which participants chose a location in the
rich (or previously rich) quadrant, as opposed to the
sparse quadrants.

Experiment 1A

We first examined the data from participants who were trained
in visual search and tested in treasure hunt (Fig. 2).

Training (visual search) RTs were significantly faster when
the target fell in the rich quadrant rather than the sparse
quadrants, F(1, 11) = 44.56, p < .001, ηp

2 = .80. RTs also
improved as the experiment progressed, F(31, 341) = 3.51, p <
.001, ηp

2 = .24. The two factors showed amarginal interaction,
F(31, 341) = 1.41, p < .08, ηp

2 = .11. Probability cuing was
absent in Block 1 (p > .13) but developed after several dozen
trials.

Testing (treasure hunt) If probability cuing resulted in a gen-
eral spatial bias toward the rich quadrant, then the proportion
of trials on which people chose the rich quadrant in the
treasure hunt task should exceed chance (.25). But on the
contrary, participants were no more likely to select a location
in the (visual search) rich quadrant than in the sparse quad-
rants, F < 1.

Next we examined the data from participants trained in
treasure hunt and tested in visual search (Fig. 3).

Training (treasure hunt) Participants were more likely to
choose a box in the rich quadrant than in any of the sparse
quadrants in the training phase,F(1, 11) = 5.85, p < .034, ηp

2 =
.35. This bias developed over time, resulting in a significant
Quadrant × Block interaction, F(31, 341) = 1.52, p < .041, ηp

2

= .12. Thus, the treasure hunt task yielded a bias toward the
rich quadrant.

Testing (visual search) We found no evidence of transfer
between tasks. Visual search RTs improved as testing
progressed, F(31, 341) = 2.53, p < .001, ηp

2 = .19. However,
they were unaffected by the quadrant condition, F(1, 11) =
1.81, p > .20, and no interaction emerged between quadrant
and block, F < 1. The bias to choose a box in the rich quadrant
during training did not transfer to a task that required partic-
ipants to search through and identify items in the display.

Experiment 1B

Could the lack of transfer in Experiment 1A be attributed
to a change in display characteristics between the two
tasks? After all, the two tasks differed in their numbers
of items and in the appearances of the items. To address
this possibility, we examined the data from Experiment
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1B, which equated the numbers of stimuli and their ap-
pearances across the two tasks.

Training (visual search) As is shown in Fig. 4, people who
conducted visual search in the training phase were significant-
ly faster when the target was in the rich quadrant rather than
the sparse quadrants, F(1, 11) = 51.78, p < .001, ηp

2 = .83.
This effect did not interact with block, F < 1. The difference
between the rich and sparse conditions in Block 1 could be
attributed to noise, since each block contained only six trials
per condition. Alternatively, it could reflect short-term trial
sequence effects. Specifically, because the target was more
likely to appear in the rich quadrant, immediate repetition of
the target’s quadrant happened more often in the rich than in
the sparse condition (Walthew & Gilchrist, 2006). To ensure
that participants had acquired long-term learning of the tar-
get’s location probability, we examined data from the second
half of training (Blocks 17–32) and separated trials with or
without an immediate repetition of the target’s quadrant. The
RT advantage in the rich condition was substantial (440 ms, p
< .001), even on trials without an immediate repetition of the
target’s quadrant. Thus, participants showed a spatial bias
toward the rich quadrant in the visual search task.

Testing (treasure hunt) The attentional bias did not persist in
the treasure hunt task (Fig. 4b). Participants were no more
likely to choose an item in the rich quadrant than in the sparse
quadrants in the treasure hunt task, F < 1.

Training (treasure hunt) As is shown in Fig. 5, participants
trained in the treasure hunt task of Experiment 1B developed a
preference for the rich quadrant. They were more likely to
click on an item in the rich quadrant than in any of the sparse
quadrants, F(1, 11) = 3.62, p = .084, ηp

2 = .25, and this
preference increased as training progressed: F(31, 341) =
1.76, p < .009, ηp

2 = .14, for the interaction between condition
and block.

Testing (visual search) The preference for the rich quadrant,
however, did not transfer to visual search. Search RTs were
not faster when the target was in the rich quadrant rather than
the sparse quadrants, nor did target quadrant interact with
block, Fs < 1.

A further analysis that combined the data from Experi-
ments 1A and 1B yielded the same pattern of statistical results
as those reported for each individual experiment: Probability
cuing was highly significant in the training task but did not
persist in the testing task.

At the end of the experiment, participants were asked to
identify the rich quadrant. Thirteen (five trained in treasure
hunt and eight trained in visual search) of the 48 participants
correctly identified the rich quadrant. This number did not
differ from chance, p > .50. None of the effects reported in this
experiment differed between participants who correctly iden-
tified the rich quadrant and the other participants, all ps > .10
for the interaction between participants (“aware” or “un-
aware”) and the other experimental factors. This was also

Fig. 2 Experiment 1A’s results, from participants trained in visual search
and tested in a treasure hunt. a Visual search RTs during training. b
Proportions of trials on which a treasure chest was chosen in the trained

rich quadrant, as opposed to in one of the sparse quadrants. Chance was
.25. Error bars in this and all subsequent figures show ±1 SE of the mean
between participants

Fig. 3 Experiment 1A results, from participants trained in a treasure hunt
and tested in visual search. a Proportions of trials onwhich people chose a
treasure chest in the rich quadrant as opposed to any of the sparse

quadrants. b Visual search RTs as a function of whether the quadrant that
the target appeared in had been rich or sparse during training. Error bars
show ±1 SE of the mean
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the case in subsequent experiments. As in other studies (Geng
& Behrmann, 2002; Jiang, Swallow, & Rosenbaum, 2013),
probability cuing was incidental. Because explicit recognition
contributed little to performance, and because the issue of
explicit awareness has been addressed more fully elsewhere
(e.g., Geng & Behrmann, 2002; Jiang, Swallow, Rosenbaum,
& Herzig, 2013; Jiang, Swallow, & Sun, 2014), we will not
discuss the recognition data further.

Discussion

Experiment 1 provided evidence against the idea that the
attentional bias acquired from one task reflects a generic and
transferrable change in spatial attention. On the contrary,
probability cuing developed in a visual search task did not
persist when participants performed treasure hunt, or vice
versa. The lack of transfer was found even when the visual
displays were similar between the two tasks (Exp. 1B). Thus,
the data from Experiment 1 suggest that changes in the atten-
tional priority map are task-specific.

When trained in treasure hunt, participants developed a
preference for the rich quadrant. It may seem surprising that
the preference for the rich quadrant (28% in Exp. 1A and 36%
in Exp. 1B) was less than the probability that the gold coins
would appear in the rich quadrant (50%). However, 50% was
not the asymptote level of performance. In reinforcement
learning, the asymptote level is jointly determined by the
environmental statistics and reinforcement history. The prob-
ability that a specific choice will be made follows the Softmax
function (Sutton & Barto, 1998), which in our study may be
simplified to

ep−rich
.

ep−rich þ ep−sparse1 þ ep−sparse2 þ ep−sparse3
� �

:

Plugging in the probabilities for the rich quadrant (.5) and
the sparse quadrants (.167) yields an asymptote level of 31.7%
for the rich quadrant.1 The observed data in the treasure hunt
task therefore match what is expected. Nonetheless, learning

from the treasure-hunt task failed to influence attentional
allocation in the subsequent visual search task, and vice versa.

Experiment 2

We next set out to test the opposite view about the task
specificity of probability cuing: When prioritizing attention,
the visual system only considers prior experience from the
same task. Consequently, the priority weights for locations are
reset in a new task to reflect only the current task’s goals and
perceptual saliency, but not previous experience. This view
predicts a high degree of task specificity. Because potentially
an infinite number of tasks exist, to keep the research tractable,
we restricted our investigation to visually guided search tasks.
The first study—Experiment 2—involved two visual search
tasks of different targets and distractors, but with similar levels
of search efficiency (slopes). In one task, participants searched
for a T target among L distractors and reported the T’s color. In
the other task, they searched for a rotated 2 among rotated 5s
and reported the 2’s color (Fig. 6). Pilot data from nine
participants showed equivalent search slopes on target-
present trials: 98 ms/item in the T/L task and 97 ms/item in
the 2/5 task. Despite this similarity, the T/L and 2/5 tasks
constituted a noticeable change in task. As will be shown
later, search RTs in one task improved with training, but
suddenly slowed down when the other task began. If changes
in spatial attention are task-specific, then probability cuing
should not persist across the T/L and 2/5 tasks.

Method

Participants A group of 16 new participants from the Uni-
versity of Minnesota completed Experiment 2 for extra course
credit or $10/h. Their characteristics were similar to those
from Experiment 1.

Task Participants conducted visual search throughout the ex-
periment, but the search items were either a Tand several Ls or1 We thank Roger Remington for this reference.

Fig. 4 Experiment 1B’s results, from participants trained in visual search
and tested in a treasure hunt. a Visual search RTs during training. b
Proportions of trials on which an item was chosen in the trained rich

quadrant as opposed to the sparse quadrants. Chance was .25. Error bars
show ±1 SE of the mean
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a rotated 2 and several rotated 5s. There were 12 items in each
display, and the color of each item was randomly determined
to be either black or white. Participants were asked to find the
target (T in the T/L task and 2 in the 2/5 task) and to press a
button to report its color.

Design Half of the participants performed the T/L task during
training and the 2/5 task during testing; the other half had the
reverse order. For all participants, the target was more often
found in a rich quadrant (50%) during training, but its location
probability was random during testing (25% in each quadrant).
As in Experiment 1, 384 trials were presented in each phase.

All other aspects of the experiment were the same as those
of Experiment 1.

Results

As is shown in Fig. 7, probability cuing emerged in the
training phase and persisted in the testing phase.

Training In the training phase, participants were significantly
faster when the target fell in the rich quadrant rather than in the
sparse quadrants, F(1, 15) = 9.98, p < .006, ηp

2 = .40, dem-
onstrating probability cuing. RTs were also faster as the

experiment progressed, F(31, 465) = 7.88, p < .001, ηp
2 =

.34, but the two factors did not interact significantly, F(31,
465) = 1.04, p > .35. RTs did not differ between the rich and
sparse conditions in the first block (p > .50), but were signif-
icantly faster in the rich than in the sparse condition by the end
of training (Block 32, p < .02). The magnitude of probability
cuing was smaller in this experiment than in Experiment 1.
This reduction may be attributed to a strategy of searching
only through one set of colored items and reporting whether
the target was present in that set (e.g., the white items).
Because probability cuing scales with set size (Geng &
Behrmann, 2005; Jiang, Swallow, & Rosenbaum, 2013), a
reduction in the effective set size would reduce its magnitude.

Testing Although the search task changed, the learned atten-
tional bias persisted. In the testing phase, we observed a
significant main effect of target quadrant, F(1, 15) = 7.66, p
< .014, ηp

2 = .34, with faster RTs when the target lay in the
previously rich quadrant. RTs were unaffected by block, F(31,
465) = 1.46, p > .15, or a Block × Quadrant interaction, F(31,
465) = 1.06, p > .35. Probability cuing persisted even though
the change in task yielded a substantial increase in search RTs:
The RT in the first block of the testing phase (Block 33) was
660 ms slower than the RT in the last block of the training
phase (Block 32), F(1, 15) = 19.25, p < .001, ηp

2 = .56.

Discussion

Experiment 2 showed that the attentional bias that was ac-
quired during the T/L search task persisted when participants
performed the 2/5 task, and vice versa. Although changes in
item identity resulted in a substantial rise in search RTs, they
did not reset the learned attentional bias. These data provide
strong evidence for the presence of a common and transferra-
ble spatial attentional bias for the T/L and 2/5 tasks. In
contrast, Experiment 1 showed that this commonality did
not extend to the treasure-hunt task. Together, the first two
experiments rule out the two extreme views. Statistical learn-
ing of the target’s location probability produces an attentional

Fig. 6 Schematic illustration of the tasks and design used in Experiment
2. Participants searched for a target and reported its color. The items are
not drawn to scale, and the quadrant borders as well as the targets’ spatial
probabilities were not actually shown in the experiment

Fig. 5 Experiment 1B’s results, from participants trained in treasure hunt
and tested in visual search. a Proportions of trials on which people chose
an item in the rich quadrant rather than one in a sparse quadrant. b Visual

search RTs as a function of whether the quadrant that the target appeared
in had been rich or sparse during training. Error bars show ±1 SE of the
mean
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bias that is neither fully transferrable across tasks nor
hyperspecific to the training task.

Experiment 3

The contrast between Experiments 1 and 2 raises questions
about what other tasks might share a transferrable learned
attentional bias. To address this question, in Experiments 3–
5 we tested some of the most commonly used visual search
tasks in the laboratory. The feature integration theory divides
visual search into feature search and conjunction search
(Treisman, 1988), whereas the Guided Search model con-
siders all tasks as falling on a continuum ranging from highly
efficient to highly inefficient search (Wolfe, 2007). These
models do not explicitly address whether training effects are
transferrable across different search tasks. If an attentional bias
developed in one task persisted when people perform another
task, this finding would provide some of the strongest evi-
dence for the use of a common and transferrable spatial
attention map for these tasks.

Experiment 3 tested the hypothesis that tasks similar in
search efficiency share a common attentional priority map, but
tasks dissimilar in search efficiency rely on different spatial
attentionmaps (the search efficiency hypothesis). This hypoth-
esis was motivated by the larger literature on implicit learning.
Limited transfer across tasks is a hallmark of implicit learning
(Dienes & Berry, 1997). For example, artificial grammar
learning and sequence learning are specific to the surface
features of the tasks. Transfer is limited when the underlying
statistical structure remains the same but the surface features
change (e.g., from one set of letters to another, or from the
visual to the auditory modality; Berry, Banbury, & Henry,
1997; Dienes & Berry, 1997). Similarly, motor skill learning
is specific to the difficulty of the training task. In a rotary
pursuit task, transfer of skills was reduced if people were
trained on an easy task (e.g., with a slow speed) and tested
on a difficult task (e.g., fast speed), or vice versa (Namikas &
Archer, 1960). As a form of implicit learning, probability
cuing may be similarly constrained.

To test the search efficiency hypothesis, we employed two
T-among-L search tasks. The target T and distractor Ls were
either highly similar (difficult search) or dissimilar (easy
search), producing different search slopes. We examined
whether probability cuing persisted across changes in search
efficiency.

Method

Participants A group of 64 participants completed Experi-
ment 3.

Stimuli Participants searched for a T target among a varying
number of L distractors and reported the orientation of the T.
The offset between the two segments of the Ls was 0° in the
easy task and 0.27° in the difficult task (see Fig. 8).

Design Participants completed two consecutive phases. The
target’s location probability was biased toward a rich quadrant
(50% of the trials) in the training phase, but was unbiased
(25% in each quadrant) in the testing phase. In addition, to
verify that the difficulty manipulation was effective, we ma-
nipulated the number of items in the display (8, 12, or 16). The
trial number changed slightly from those in previous experi-
ments to accommodate the set size manipulation: 360 trials
were presented in a randomly intermixed order in each phase.

Participants were divided into four groups based on the
tasks they performed in the two experimental phases. There
were 16 participants in each group. Throughout the experi-
ment, the both-easy group performed only the easy task,
whereas the both-difficult group performed only the difficult
task. The easy–difficult group performed the easy task during
training but the difficult task during testing, and the difficult–
easy group had the reverse order.

Results

This experiment produced a large amount of data, owing to
the presence of four participant groups and the addition of a
set size manipulation. For readability, we have simplified the
data report by averaging across different blocks. Figure 8

Fig. 7 Results from Experiment 2. Participants performed a T/L search task in the training phase and a 2/5 search task in the testing phase, or vice versa.
Error bars show ±1 SE of the mean
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shows data from the training phase separately for the four
groups of participants.

Training phase Because the training task was the same for the
participants in the both-easy and easy–difficult groups and for
those in the both-difficult and difficult–easy groups, our
ANOVA included Training Task Difficulty (easy or difficult)
as a between-groups factor, and Probability Cue Condition
(sparse or rich) and Set Size (8, 12, or 16) as within-groups
factors. All main effects were significant: RTs were faster in
the rich than in the sparse condition, F(1, 62) = 72.15, p <
.001, ηp

2 = .54; faster in the easy than in the difficult task, F(1,
62) = 554.71, p < .001, ηp

2 = .90; and faster when fewer items
were on the display, F(2, 124) = 566.85, p < .001, ηp

2 = .90.
Our manipulation of task difficulty was effective, as we ver-
ified with a significant interaction between difficulty and set
size, F(2, 124) = 321.71, p < .001, ηp

2 = .84, in which search
slopes differed substantially: 33 ms/item in the easy task and
232 ms/item in the difficult task. In addition, a significant
interaction was observed between quadrant condition and set
size, F(1, 62) = 16.01, p < .001, ηp

2 = .21: Search slopes were
shallower in the rich than in the sparse condition. Finally, a
significant three-way interaction showed that the effects of
probability cuing on search slope were greater in the more
difficult search task, F(2, 124) = 5.59, p = .005, ηp

2 = .083.

Testing phase Having observed a significant probability-cuing
effect in the training phase, we now turned to the question of
whether the persistence of cuing depended on the match of

search efficiency between the training and testing tasks. Figure 9
plots data from the four groups of participants during testing.

In the testing phase, the four groups differed not only in the
difficulty of visual search but also in whether the testing task
matched the training task.We therefore conducted anANOVA
using Task Difficulty (easy or difficult) and Task Status
(match or mismatch) as between-groups factors, and Quadrant
Condition (sparse or rich) and Set Size as within-groups
factors. This analysis produced a significant main effect of
quadrant condition, F(1, 60) = 20.16, p < .001, ηp

2 = .25,
suggesting that probability cuing persisted in the testing
phase. In addition, RTs were faster when fewer items were
on the display, F(2, 120) = 407.48, p < .001, ηp

2 = .87. RTs
were slower and search slopes were steeper in the more
difficult task, F(1, 60) = 596.71, p < .001, ηp

2 = .91, and
F(2, 120) = 221.65, p < .001, ηp

2 = .79, respectively. Impor-
tantly, whether task difficulty matched between training and
testing did not influence search RTs, F(1, 60) = 1.58, p > .20,
nor did this factor interact with condition (rich or sparse), F <
1. None of the higher-order interactions involving task status
(match or mismatch) and condition was significant, all Fs < 1.
All other interaction effects did not reach significance,
smallest p = .08. Thus, a tenfold change in search slope did
not affect how probability cuing persisted in the testing phase.

Discussion

Experiment 3 showed that probability cuing persisted follow-
ing a change in search difficulty. These data suggest that

Fig. 8 Results from the training phase of Experiment 3. During training,
the participants in panels a and c performed an easy search task, whereas
those in panels b and d performed a difficult search task. Note that the y-

axes are optimized for each panel and differ for the easy and difficult
tasks. Error bars show ±1 SE of the mean. Panels e and f show sample
displays in the easy and difficult tasks, respectively
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changes in search efficiency do not necessarily change how
previous experience influences visual search. This finding is
surprising, considering that probability cuing results from
implicit learning, which previously has been shown to pro-
duce limited transfer (Dienes & Berry, 1997). One way to
account for this discrepancy may be to consider the processes
involved in serial search, which relies on the movement of
spatial attention from one location to the next as well as on
object recognition (Wolfe, 2007). Although recognition and
categorization may take longer in the more difficult than in the
easy task, the roles of attentional shifts across tasks may be
similar, and this similarity may account for the transfer of
cuing between the two tasks. This possibility is consistent
with an earlier proposal that probability cuing reflects the
reinforcement of attentional shifts that land on targets (Jiang,
Swallow, & Capistrano, 2013).

Experiment 4

According to the Guided Search model (Wolfe, 2007), feature
and conjunction search differ chiefly in how efficiently per-
ceptual features and explicit goals guide attention. When a
single feature distinguishes the target from distractors (e.g.,
red vs. green color), the featural difference can effectively
guide attention to the target, producing shallow search slopes.
However, much like conjunction search, feature search tasks
differ widely in efficiency. Some feature search tasks, such as

finding a vertical line (0°) among 20°-tilted lines, yield steep
search slopes (Wolfe, Friedman-Hill, Stewart, & O’Connell,
1992). Importantly, differences between feature and conjunc-
tion search tasks could reflect recognition processes rather
than qualitative differences in how spatial attention moves
from one location to another. In Experiment 4, we tested
whether probability cuing persisted when one of the two tasks
was a feature search task, whereas the other was a conjunction
search task.2

Method

Participants A group of 32 new participants completed Ex-
periment 4: 16 in each of Experiments 4A and 4B.

Design The two tasks used in Experiment 4 were a T/L spatial
configuration search task and a line orientation feature search
task. On each trial, participants saw an array of items (T and
Ls, or lines). In the T/L task, the target was a T and the
distractors were Ls. In the line orientation task, the target
was a vertical line (1.37° in length) and the distractors were
slanted lines (also 1.37° in length) tilted ±20° away from the
vertical (approximately half of the distractors tilted clockwise
and the other half tilted counterclockwise). In both tasks, half
of the items were black and the other half were white.

2 The T/L search task is most accurately described as a spatial configu-
ration search task, a form of extremely inefficient search task (Wolfe,
1998). For simplicity of description, we use the term “conjunction
search.”

Fig. 9 Results from the testing
phase of Experiment 3. During
testing, the participants in panels
a and d performed an easy search
task, whereas those in panels b
and c performed a difficult search
task. Note that the y-axes are
optimized for each panel and
differ for the easy and difficult
tasks. Error bars show ±1 SE of
the mean
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Participants were asked to find the target and to report whether
it was black or white. The number of items on the display
could be 8, 12, or 16.

The participants in Experiment 4A performed the orienta-
tion search task in the training phase and the T/L task in the
testing phase. Those in Experiment 4B had the reverse order.
As in the previous experiments, the target was more often
found in a rich quadrant in the training phase, but its location
was random in the testing phase. There were 360 trials in each
phase. Because the smallest number of trials to produce a
balanced design was 36, the data were divided into ten blocks
in each phase. Other aspects of the experiment were the same
as in Experiment 3.

Results

Experiment 4A

Training (difficult feature search) As is shown in Fig. 10a, in
the training phase, participants acquired probability cuing in
the feature search task. An ANOVA on probability cue con-
dition and block showed that RTs were significantly faster in
the rich than in the sparse condition, F(1, 15) = 56.72, p <
.002, ηp

2 = .79, and also improved as the experiment
progressed, F(9, 135) = 7.30, p < .001, ηp

2 = .32. These two
factors did not interact significantly, F(9, 135) = 1.80, p =
.074.

Testing (T/L search) When the task changed to the T/L search
task, overall RTs increased substantially (p < .001). However,
probability cuing persisted: RTs were significantly faster in the
rich than in the sparse condition, F(1, 15) = 17.70, p < .001,
ηp

2 = .54. This effect did not interact with block, F < 1. As is
shown in Fig. 10b, the search slope was shallower in the rich
condition than in the sparse condition, producing a significant
interaction between cue condition and set size: F(2, 30) =
4.01, p < .05, ηp

2 = .21, in the training phase; F(2, 30) =
3.34, p < .05, ηp

2 = .18, in the testing phase. Thus, training in a
difficult feature search task produced an attentional bias that
transferred to a spatial configuration search task.

Experiment 4B

Training (T/L search) In the training phase (Fig. 11a), the T/L
search task produced a significant probability-cuing effect,
F(1, 15) = 27.76, p < .001, ηp

2 = .65. This effect increased
with training, yielding a significant interaction between cue
condition and block, F(9, 135) = 4.36, p < .001, ηp

2 = .23.

Testing (difficult feature search) Probability cuing persisted in
the difficult feature search task. The main effect of cue condi-
tion was marginally significant when the data were separated
into ten blocks of trials (Fig. 11a), F(1, 15) = 4.45, p < .052,

ηp
2 = .23, but reached significance when the data were aver-

aged across blocks (Fig. 11b), F(1, 15) = 4.60, p < .05, ηp
2 =

.24. Probability cue condition did not interact with set size in
either the training phase, F < 1, or the testing phase, F(2, 30) =
1.25, p > .30.

Discussion

The data from Experiment 4 were consistent with the idea that
location probability learning resulted in a transferrable atten-
tional bias between a difficult feature search task and a con-
junction search task (the T/L spatial configuration search
task). In Experiment 4A, participants performed the T/L task
in the testing phase, and their performance was clearly influ-
enced by prior training in a difficult feature search task. The
participants in Experiment 4B also demonstrated transfer of
location probability learning: After acquiring probability cu-
ing in the T/L search task, they continued to favor the previ-
ously rich quadrant in a difficult feature search task. Thus,
probability cuing transferred from a difficult feature search
task to a conjunction search task, and vice versa.

Although transfer was evident in both experiments, the
magnitude of the probability-cuing effect decreased in the
testing phase (from 394 to 249 ms in Exp. 4A and from 465
to 147 ms in Exp. 4B). Some of this decrease could reflect a
change in statistics, since the degree of reduction was no
greater in Experiment 4A than in Experiment 3. However,
because the reduction was immediately observed in Experi-
ment 4B when the task changed, it could also reflect the
change in task. In Experiment 5, we further examined the
transfer between conjunction and feature search tasks.

Experiment 5

Under which conditions would the visual system draw upon
previous experience in prioritizing spatial attention? So far,
our investigation has focused on one factor: consistency be-
tween the previous tasks and the current one. However, when
the task changes, other attentional cues may change the utility
of the probability cue. If the new task contains strong top-
down goals or salient perceptual features, these cues may
overshadow the use of the learned probability cue. In fact,
several recent studies have shown that explicit cues interfere
with implicitly guided attention (Jiang, Swallow, &
Rosenbaum, 2013; Rosenbaum & Jiang, 2013). In addition,
implicit attentional cuing is weakened when participants
search for a simple feature target (Druker & Anderson,
2010; Geyer, Zehetleitner, & Müller, 2010; Kunar, Flusberg,
Horowitz, & Wolfe, 2007). Thus, when examining the task
specificity of probability cuing, it is important to consider the
utility of previous experience relative to other attention cues.
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Simple feature search tasks, such as finding a white letter
among black letters, involve efficient guidance of spatial
attention. Because perceptual saliency is a potent cue for
spatial attention, probability cuing should have a limited im-
pact on simple feature search. Consequently, after training in a
conjunction search task, the resulting probability cue should
have limited to no impact on a subsequent feature search task.
The reduction in probability cuing in Experiment 4B was
consistent with this idea. The more efficient the feature search
task is, the less likely probability cuing would transfer from
conjunction search to feature search. This prediction would be
tested in Experiment 5A.

The reverse scenario—transfer from simple feature to con-
junction search—is more difficult to predict. As had been
shown in a previous study, probability cuing could be ob-
served even when the display contained just a single item
(Druker & Anderson, 2010). This raises the possibility that
locations that frequently contain a target are prioritized, even
when no search is necessary. When subsequently probed with
a conjunction search task, probability cuingmay exert a strong
influence on spatial attention, paradoxically increasing the
size of cuing from training to testing. Alternatively, it is
possible that training in a simple feature search task might
induce only a weak attentional bias, and the salient perceptual
cue might overshadow the learning of the probability cue.
Probability cuing would therefore not be revealed, even when

probed with a conjunction search task. These contrasting
predictions would be tested in Experiment 5B.

Method

Participants A group of 24 participants completed this exper-
iment, 12 in Experiment 5A and 12 in Experiment 5B.

Design and procedure In these experiments, participants
searched for a T target among L distractors and reported the
direction of the T (left or right). In the training phase, the
location of the T was biased toward a rich quadrant (50% of
trials). In the testing phase, the T’s location was random,
appearing in each quadrant 25% of the time. There were 384
trials in each phase.

In the training phase of Experiment 5A, the target and
distractors had the same color, necessitating the several shifts
of attention that are characteristic of conjunction search. In the
testing phase, the target was in one color (e.g., white), but the
distractors were in another color (e.g., black). Thus, the task
involved simple feature search. Although the detection of a
color singleton may not demand spatial attention (Treisman,
1988), to identify the target’s orientation participants would
need to shift attention to the target’s location. The feature task
therefore likely involved one attentional shift from the default
location (i.e., the fixation point) to the target’s location.

Fig. 10 Results from Experiment 4A: Participants performed the line
orientation feature search task in the training phase and the T/L spatial
configuration search task in the testing phase. aData across the 20 blocks

of trials (each block contained 36 trials). b Data across the entire training
(left) and testing (right) phases. Error bars show ±1 SE of the mean

Fig. 11 Results from Experiment 4B: Participants performed the T/L
search task in the training phase and the line orientation feature search
task in the testing phase. a Data across the 20 blocks of trials (each block

contained 36 trials). b Data across the entire training (left) and testing
(right) phases. Error bars show ±1 SE of the mean
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Experiment 5B was similar, except for the order of tasks:
Participants were trained in the simple feature search task and
tested in the conjunction search task. We examined whether
the spatial bias developed from simple feature search would
persist in the conjunction search task.

Although we did not measure search slopes directly, on the
basis of similar visual search experiments we estimated the
search slope to be 0 ms/item in the feature search task and
about 100 ms/item in the conjunction search task.

Results

Figures 12 and 13 show the results from Experiments 5A and
5B, respectively.

Experiment 5A: conjunction to feature search

Training (conjunction search) In the conjunction search task,
RTs were significantly faster when the target appeared in the
rich quadrant rather than the sparse quadrants, F(1, 11) =
70.26, p < .001, ηp

2 = .87, and RTs also improved as the
experiment progressed, F(31, 341) = 2.33, p < .001, ηp

2 = .18.
The two factors did not interact, F(31, 341) = 1.15, p > .25;
learning emerged early and was maintained for most of the
training phase. The size of the effect was large: By the end of
training, the RT in the rich condition was 25% faster (about
800 ms) than that in the sparse condition.

Testing (feature search) RTs improved, primarily from the
first to the second testing blocks, F(31, 341) = 3.62, p <
.001, ηp

2 = .25. However, they were unaffected by quadrant
condition, F(1, 11) = 3.22, p > .10. The two factors did not
interact, F < 1. Even the first block after transfer showed no
effect of target quadrant, p > .50.

Experiment 5B: feature to conjunction search

Training (feature search) RTs were significantly faster when
the target lay in the rich quadrant rather than the sparse
quadrants, F(1, 11) = 14.66, p < .003, ηp

2 = .57, and RTs also
improved as the experiment progressed, F(31, 341) = 5.13, p <
.001, ηp

2 = .32. We found no interaction between target
quadrant and block, F < 1. A significant probability-cuing
effect emerged in the training phase, although the magnitude
of the effect was small.

Testing (conjunction search) Probability cuing failed to trans-
fer from feature to conjunction search. RTs improved as
testing progressed, F(31, 341) = 2.52, p < .001, ηp

2 = .19,
but they were unaffected by target quadrant, F(1, 11) = 1.05, p
> .30, or a Quadrant × Block interaction, F < 1. Even the first
testing block showed no advantage for the previously rich
quadrant, p > .50. No evidence emerged that the simple feature

search task had produced a robust and transferrable change of
attention.

Discussion

Probability cuing did not transfer from conjunction search to
feature search (Exp. 5A). Even though a strong attentional
bias had developed in the training phase, it did not influence
performance in the simple feature search task. These data are
compatible with the idea that probability cuing is only one of
several sources of spatial attention. Its utility in guiding atten-
tion is substantially reduced in the presence of other strong
top-down or bottom-up cues.

Conversely, probability cuing also failed to transfer from
feature search to conjunction search (Exp. 5B). Although the
target was frequently located in a rich quadrant in the training
phase, and an attentional shift was necessary to identify the
target, this did not result in a strong and transferrable atten-
tional bias to the subsequent conjunction search task. These
data differed from those of Experiment 4A, in which a strong
and transferrable probability-cuing effect was observed when
participants were trained in a difficult feature search task. The
highly salient perceptual cue used in Experiment 5B likely
overshadowed location probability learning. Thus, frequently
placing a target in one visual quadrant was insufficient to
produce a strong attentional preference for those locations.

General discussion

Recently, several researchers have proposed that one’s previ-
ous experience influences visual attention (Awh et al., 2012;
Chun, Golomb, & Turk-Browne, 2011; Hutchinson & Turk-
Browne, 2012; Jiang, Swallow, & Rosenbaum, 2013). How-
ever, unlike explicit behavioral goals and perceptual saliency,
previous experience contains a vast amount of information.
When performing a task, how does the visual system deter-
mine which, if any, of one’s previous experience is relevant?
The larger implicit-learning literature predicts limited transfer
of implicitly acquired knowledge across tasks and context
(Berry et al., 1997; Dienes & Berry, 1997), a prediction that
fits the instance theory of attention and automaticity (Logan,
2002). But what constitutes a meaningful change in task and
context? How does learning interact with other cues of atten-
tion? Several answers have emerged from the present study.

First, the visual system is more likely to rely on previous
experience if no other strong cues already exist to guide
attention. When a salient visual feature already guides atten-
tion, probability cuing from a previous task does not affect
performance in the current task (Exp. 5A). In the absence of
other cues, however, location probability learning has a sub-
stantial influence on behavior. This influence persists over
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several hundred trials and across many, though not all, types
of task changes.

Second, among visually guided search tasks, location prob-
ability learning produces a highly transferrable change in
attentional bias. Probability cuing transferred between the T/
L and 2/5 tasks, between easy and difficult conjunction search
tasks, and between difficult feature search and conjunction
search tasks. Conjunction and simple feature search tasks
appear to present an exception (Exp. 5), though this lack of
transfer is likely attributable to the presence of a perceptually
salient cue.

Third, the effects of probability cuing appear to be confined
to visually guided search tasks. Experiment 1 showed no
transfer between visual search and a foraging-like treasure
hunt task. When performing a treasure hunt task in which
the treasure was more often located in one visual quadrant,
participants showed an increasing tendency to choose an item
in that quadrant. These highly rewarded locations, however,
were not prioritized in the subsequent visual search task.
Conversely, after developing a strong preference for the rich
quadrant in the visual search task, participants were no more
likely to select an item in that quadrant in the subsequent
treasure hunt task. Probability cuing is therefore unlikely to
be due to a generic change in spatial attention.

These findings suggest that the effects of learning statistical
regularities on attention may be limited to the specific mech-
anisms used in the training and transfer tasks. Probability
cuing transferred between tasks only when both involved

serial shifts of attention from one item to the next and when
no other salient cues were available. What is the mechanism
that allows for this transfer? One possibility is that transfer
reflects relatively stable changes to the attentional priority
map (Bisley & Goldberg, 2010; Fecteau & Munoz, 2006; Itti
& Koch, 2001; Wolfe, 2007). Most theories of spatial atten-
tion suggest that the attentional priority map combines per-
ceptual input with goals and other cues to guide attention to
behaviorally relevant spatial locations (Bisley & Goldberg,
2010; Wolfe, 2007). However, these discussions of the atten-
tional priority map have been largely agnostic as to whether
the samemap is used in different search tasks. The high degree
of transfer across search tasks in this study suggests that this is
likely to be the case.

A second, though not exclusive, possibility is that proba-
bility cuing produces stable and transferrable changes in what
we have called “procedural attention” (Jiang, Swallow, &
Capistrano, 2013). Probability cuing in visual search tasks is
coded in a head-centered reference frame, does not update
with movements through space, and increases the number of
first saccades to the rich region (Jiang & Swallow, 2013b;
Jiang, Won, & Swallow, 2014). In addition, it appears to
operate in a manner that is qualitatively different from goal-
driven or explicit attentional biases (Jiang, Swallow, &
Rosenbaum, 2013; Jiang, Swallow, & Sun, 2014; Jiang,
Won, & Swallow, 2014). We have taken these findings to
suggest that probability cuing influences how attention moves
through space, by increasing the likelihood that it moves in a

Fig. 12 Results from Experiment 5A. a Training phase, involving conjunction search. b Testing phase, involving feature search. Error bars show ±1 SE
of the mean

Fig. 13 Results from Experiment 5B. a Training phase, involving feature search. b Testing phase, involving conjunction search. Error bars show ±1 SE
of the mean
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certain direction. This view could help account for the lack of
transfer between visual search and a treasure hunt. Visual
search involves a series of attentional shifts, each of which is
made by jointly considering the current visual input, the
current trial’s search history, and previous history in similar
tasks. In contrast, no visual cues aid performance in the
treasure hunt task—all of the items are visually identical.
The task also does not involve search. Rather, it relies on a
high-level decision that is based entirely on the reinforcement
history of previous choices. Thus, the need to move attention
through space (rather than shared visual space) may be a
critical factor in determining whether probability cuing trans-
fers between tasks.

A consideration of how attention moves through space
raises the possibility that not all visually guided search tasks
would show transferrable attentional biases. Tasks that rely
primarily on eye movements (such as the ones used here) may
differ qualitatively from tasks that rely on body and head
movements (such as real-world search tasks). In addition,
tasks that are “data limited,” such as by visual crowding,
may differ qualitatively from tasks that are “resource limited,”
such as simple visual search (Norman & Bobrow, 1975).
These predictions should be tested in future research.

Although we have emphasized the procedural component
of attention training, we also recognize the contribution of
other sources of attention, such as explicit goals. The mecha-
nisms that govern task specificity likely differ between im-
plicitly learned attention and explicit, goal-driven attention.
Whereas implicitly learned attention shows transfer across
tasks that involve similar shifts of attention, the task instruc-
tions may change the pattern of cross-task transfer. For exam-
ple, if participants know that the treasure box is often located
where the visual search target is, they may explicitly look for
target-rich regions in the search task and prioritize these
regions when performing the treasure hunt. Therefore, when
predicting whether attentional training transfers across tasks,
important factors to consider are whether training affects the
procedural or explicit component of attention and what the
participants’ explicit goals are.

Our study can be related to the broader literature on atten-
tion training. The rapid acquisition of probability cuing indi-
cates a high degree of plasticity in spatial attention. This
finding is consistent with other observations of attention train-
ing. For example, professional sports, action videogame
playing, and laboratory training enhance performance on
multiple-object tracking and other attention tasks (Anguera
et al., 2013; Faubert, 2013; Green & Bavelier, 2003;
Makovski, Vázquez, & Jiang, 2008; Thompson et al., 2013).
In addition, training in an n-back task can substantially im-
prove performance in that task (Jaeggi, Buschkuehl, Jonides,
& Perrig, 2008; Jaeggi, Buschkuehl, Jonides, & Shah, 2011).
However, several studies have shown that attention training
shows limited transfer to other tasks, such as in tests of fluid

intelligence (Jaeggi et al., 2011; Owen et al., 2010; Redick
et al., 2013; Thompson et al., 2013). To the degree that broad
transfer is observed (e.g., from action videogame playing), the
findings may be attributed to a common component across
many tasks (e.g., probabilistic inference; Green, Pouget, &
Bavelier, 2010). We believe that the key to resolving the
controversy regarding whether attention training generalizes
will be to perform a detailed analysis of the processes and
components involved in the training and testing tasks. Trans-
fer is more likely to occur if the training and testing tasks share
critical components. The present study relied on such an
analysis in revealing the moderate task specificity of proba-
bility cuing. This approach may be useful in other studies of
attention training.

Our study raises questions about the real-world implica-
tions of location probability learning. Does a 1-h training
session in the lab produce a durable, transferrable change in
participants’ spatial attention subsequently? Although such a
change is possible, we believe that its impact on daily activ-
ities would likely be limited. First, although probability cuing
shows long-term persistence, its persistence is adaptable to
new visual statistics. The spatial bias is weakened over ex-
tinction retraining (e.g., probability cuing was weaker in the
testing phase than the training phase of Exps. 3 and 4). In
addition, a new spatial bias emerges if the rich quadrant
changes to a new region (Jiang, Swallow, Rosenbaum, &
Herzig, 2013). Second, serial shifts of attention are relatively
uncommon in real-world tasks. For instance, real-world
search tasks often rely on salient features and explicit goals.
These cues may reduce the utility of probability cuing (Jiang,
Swallow, Rosenbaum, & Herzig, 2013; Rosenbaum & Jiang,
2013). Nonetheless, to the degree that a real-world task
matched the laboratory training task (e.g., serial scanning,
without other attention-guiding cues), some transfer would
be expected. With these constraints in mind, probability cuing
may be exploited to facilitate performance in the real world.
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